La fonctionnalité Article cité par… liste les citations d'un article. Ces citations proviennent de la base de données des articles de EDP Sciences, ainsi que des bases de données d'autres éditeurs participant au programme CrossRef Cited-by Linking Program . Vous pouvez définir une alerte courriel pour être prévenu de la parution d'un nouvel article citant " cet article (voir sur la page du résumé de l'article le menu à droite).
Article cité :
Andrew Canning , Jean-Pierre Naef
J. Phys. I France, 2 9 (1992) 1791-1801
Citations de cet article :
16 articles
Free energy equivalence between mean-field models and nonsparsely diluted mean-field models
Manaka Okuyama and Masayuki Ohzeki Journal of Physics A: Mathematical and Theoretical 58 (4) 045004 (2025) https://doi.org/10.1088/1751-8121/adaab4
Mean-field theory of vector spin models on networks with arbitrary degree distributions
Fernando L Metz and Thomas Peron Journal of Physics: Complexity 3 (1) 015008 (2022) https://doi.org/10.1088/2632-072X/ac4bed
Sparse Hopfield network reconstruction with ℓ
1 regularization
Haiping Huang The European Physical Journal B 86 (11) (2013) https://doi.org/10.1140/epjb/e2013-40502-8
Message passing algorithms for the Hopfield network reconstruction: Threshold behavior and limitation
Haiping Huang Physical Review E 82 (5) (2010) https://doi.org/10.1103/PhysRevE.82.056111
Feed-forward chains of recurrent attractor neural networks with finite dilution near saturation
F.L. Metz and W.K. Theumann Physica A: Statistical Mechanics and its Applications 368 (1) 273 (2006) https://doi.org/10.1016/j.physa.2005.11.049
Synchronous versus sequential updating in the three-state Ising neural network with variable dilution
D. Bollé, R. Erichsen and T. Verbeiren Physica A: Statistical Mechanics and its Applications 368 (2) 311 (2006) https://doi.org/10.1016/j.physa.2005.12.052
The Blume-Emery-Griffiths neural network with synchronous updating and variable dilution
D. Bollé and J. Busquets Blanco The European Physical Journal B 47 (2) 281 (2005) https://doi.org/10.1140/epjb/e2005-00328-7
The Little–Hopfield model on a sparse random graph
I Pérez Castillo and N S Skantzos Journal of Physics A: Mathematical and General 37 (39) 9087 (2004) https://doi.org/10.1088/0305-4470/37/39/003
Analytic solution of attractor neural networks on scale-free graphs
I Pérez Castillo, B Wemmenhove, J P L Hatchett, et al. Journal of Physics A: Mathematical and General 37 (37) 8789 (2004) https://doi.org/10.1088/0305-4470/37/37/002
Mean-field dynamics of sequence processing neural networks with finite connectivity
W.K. Theumann Physica A: Statistical Mechanics and its Applications 328 (1-2) 1 (2003) https://doi.org/10.1016/S0378-4371(03)00569-7
Retrieval behavior and thermodynamic properties of symmetrically diluted Q-Ising neural networks
W. Theumann and R. Erichsen Physical Review E 64 (6) 061902 (2001) https://doi.org/10.1103/PhysRevE.64.061902
Thermodynamic properties of extremely diluted symmetricQ-Ising neural networks
D Bollé, D M Carlucci and G M Shim Journal of Physics A: Mathematical and General 33 (37) 6481 (2000) https://doi.org/10.1088/0305-4470/33/37/302
Categorization in the symmetrically dilute Hopfield network
P. Krebs and W. Theumann Physical Review E 60 (4) 4580 (1999) https://doi.org/10.1103/PhysRevE.60.4580
The Ashkin-Teller neural network near saturation
D Bollé and P Kozlowski Journal of Physics A: Mathematical and General 32 (49) 8577 (1999) https://doi.org/10.1088/0305-4470/32/49/301
Categorization in fully connected multistate neural network models
R. Erichsen, W. Theumann and D. Dominguez Physical Review E 60 (6) 7321 (1999) https://doi.org/10.1103/PhysRevE.60.7321
Statistical mechanics of a Hopfield neural-network model in a transverse field
Yu-qiang Ma, Yue-ming Zhang, Yu-gang Ma and Chang-de Gong Physical Review E 47 (6) 3985 (1993) https://doi.org/10.1103/PhysRevE.47.3985