La fonctionnalité Article cité par… liste les citations d'un article. Ces citations proviennent de la base de données des articles de EDP Sciences, ainsi que des bases de données d'autres éditeurs participant au programme CrossRef Cited-by Linking Program . Vous pouvez définir une alerte courriel pour être prévenu de la parution d'un nouvel article citant " cet article (voir sur la page du résumé de l'article le menu à droite).
Article cité :
Didier Sornette
J. Phys. I France, 2 11 (1992) 2065-2073
Citations de cet article :
50 articles
Hair Cells in the Cochlea Must Tune Resonant Modes to the Edge of Instability without Destabilizing Collective Modes
Asheesh S. Momi, Michael C. Abbott, Julian Rubinfien, Benjamin B. Machta and Isabella R. Graf PRX Life 3 (1) (2025) https://doi.org/10.1103/PRXLife.3.013001
Viviana Gómez and Gabriel Tellez (2024) https://doi.org/10.2139/ssrn.4771638
An extension of the Ising-Curie-Weiss model of self-organized criticality with a threshold on the interaction range
Nicolas Forien Electronic Journal of Probability 29 (none) (2024) https://doi.org/10.1214/24-EJP1077
Self-organized critical dynamic on the Sierpinski carpet
Viviana Gómez and Gabriel Téllez Physical Review E 110 (6) (2024) https://doi.org/10.1103/PhysRevE.110.064141
Self-organized time crystal in driven-dissipative quantum system
Ya-Xin Xiang, Qun-Li Lei, Zhengyang Bai and Yu-Qiang Ma Physical Review Research 6 (3) (2024) https://doi.org/10.1103/PhysRevResearch.6.033185
Asheesh S. Momi, Michael C. Abbott, Julian Rubinfien, Benjamin B. Machta and Isabella R. Graf (2024) https://doi.org/10.1101/2024.07.19.604330
Emerging social brain: A collective self-motivated Boltzmann machine
Yong Tao, Didier Sornette and Li Lin Chaos, Solitons & Fractals 143 110543 (2021) https://doi.org/10.1016/j.chaos.2020.110543
Black swans, extreme risks, and the e-pile model of self-organized criticality
Alexander V. Milovanov, Jens Juul Rasmussen and Bertrand Groslambert Chaos, Solitons & Fractals 144 110665 (2021) https://doi.org/10.1016/j.chaos.2021.110665
The Forest Fire Model: The Subtleties of Criticality and Scale Invariance
Lorenzo Palmieri and Henrik Jeldtoft Jensen Frontiers in Physics 8 (2020) https://doi.org/10.3389/fphy.2020.00257
Subdiffusive Lévy flights in quantum nonlinear Schrödinger lattices with algebraic power nonlinearity
Alexander V. Milovanov and Alexander Iomin Physical Review E 99 (5) (2019) https://doi.org/10.1103/PhysRevE.99.052223
The emergence of weak criticality in SOC systems
L. Palmieri and H. J. Jensen EPL (Europhysics Letters) 123 (2) 20002 (2018) https://doi.org/10.1209/0295-5075/123/20002
25 Years of Self-Organized Criticality: Solar and Astrophysics
Markus J. Aschwanden, Norma B. Crosby, Michaila Dimitropoulou, et al. Space Science Reviews 198 (1-4) 47 (2016) https://doi.org/10.1007/s11214-014-0054-6
25 Years of Self-organized Criticality: Space and Laboratory Plasmas
A. Surjalal Sharma, Markus J. Aschwanden, Norma B. Crosby, et al. Space Science Reviews 198 (1-4) 167 (2016) https://doi.org/10.1007/s11214-015-0225-0
Anomalously slow relaxation of the system of strongly interacting liquid clusters in a disordered nanoporous medium: Self-organized criticality
V.D. Borman and V.N. Tronin Physica A: Statistical Mechanics and its Applications 457 391 (2016) https://doi.org/10.1016/j.physa.2016.03.078
Self-organized criticality revisited: non-local transport by turbulent amplification
A. V. Milovanov and J. J. Rasmussen Journal of Plasma Physics 81 (6) (2015) https://doi.org/10.1017/S0022377815001233
Criticality in Neural Systems
Anna Levina, J. Michael Herrmann and Theo Geisel Criticality in Neural Systems 417 (2014) https://doi.org/10.1002/9783527651009.ch20
A Coupled Map Lattice model for geomagnetic polarity reversals that exhibits realistic scaling
Masayuki Seki and Keisuke Ito Earth, Planets and Space 51 (6) 395 (2014) https://doi.org/10.1186/BF03352243
A mixed SOC-turbulence model for nonlocal transport and Lévy-fractional Fokker–Planck equation
Alexander V. Milovanov and Jens Juul Rasmussen Physics Letters A 378 (21) 1492 (2014) https://doi.org/10.1016/j.physleta.2014.03.047
Exploring the limits of safety analysis in complex technological systems
D. Sornette, T. Maillart and W. Kröger International Journal of Disaster Risk Reduction 6 59 (2013) https://doi.org/10.1016/j.ijdrr.2013.04.002
Dragon-kings: Mechanisms, statistical methods and empirical evidence
D. Sornette and G. Ouillon The European Physical Journal Special Topics 205 (1) 1 (2012) https://doi.org/10.1140/epjst/e2012-01559-5
Dragon-Kings: Mechanisms, Statistical Methods and Empirical Evidence
Didier Sornette and Guy Ouillon SSRN Electronic Journal (2012) https://doi.org/10.2139/ssrn.2191590
Scale Invariance
Annick Lesne and Michel Laguës Scale Invariance 345 (2012) https://doi.org/10.1007/978-3-642-15123-1_10
Epilepsy
Didier Sornette and Ivan Osorio Epilepsy 203 (2011) https://doi.org/10.1201/b10866-17
Extreme Environmental Events
Didier Sornette and Maximilian J. Werner Extreme Environmental Events 825 (2011) https://doi.org/10.1007/978-1-4419-7695-6_44
Dynamic polarization random walk model and fishbone-like instability for self-organized critical systems
Alexander V Milovanov New Journal of Physics 13 (4) 043034 (2011) https://doi.org/10.1088/1367-2630/13/4/043034
Didier Sornette and Maximilian J. Werner 7872 (2009) https://doi.org/10.1007/978-0-387-30440-3_467
Thimo Rohlf and Stefan Bornholdt 73 (2009) https://doi.org/10.1007/978-3-642-01284-6_5
Robustness: confronting lessons from physics and biology
Annick Lesne Biological Reviews 83 (4) 509 (2008) https://doi.org/10.1111/j.1469-185X.2008.00052.x
The critical properties of the agent-based model with environmental-economic interactions
Z. Kuscsik and D. Horváth Physics of Particles and Nuclei Letters 5 (3) 215 (2008) https://doi.org/10.1134/S1547477108030163
INHOMOGENEOUS AND SELF-ORGANIZED TEMPERATURE IN SCHELLING-ISING MODEL
KATHARINA MÜLLER, CHRISTIAN SCHULZE and DIETRICH STAUFFER International Journal of Modern Physics C 19 (03) 385 (2008) https://doi.org/10.1142/S0129183108012200
The critical properties of the agent-based model with environmental–economic interactions
Zoltán Kuscsik, Denis Horváth and Martin Gmitra Physica A: Statistical Mechanics and its Applications 379 (1) 199 (2007) https://doi.org/10.1016/j.physa.2007.01.003
A self-adjusted Monte Carlo simulation as a model for financial markets with central regulation
Denis Horváth, Martin Gmitra and Zoltán Kuscsik Physica A: Statistical Mechanics and its Applications 361 (2) 589 (2006) https://doi.org/10.1016/j.physa.2005.06.067
Critical phenomena in atmospheric precipitation
Ole Peters and J. David Neelin Nature Physics 2 (6) 393 (2006) https://doi.org/10.1038/nphys314
Social percolation models
Sorin Solomon, Gerard Weisbuch, Lucilla de Arcangelis, Naeem Jan and Dietrich Stauffer Physica A: Statistical Mechanics and its Applications 277 (1-2) 239 (2000) https://doi.org/10.1016/S0378-4371(99)00543-9
Mixed hierarchical model of seismicity: scaling and prediction
M.G. Shnirman and E.M. Blanter Physics of the Earth and Planetary Interiors 111 (3-4) 295 (1999) https://doi.org/10.1016/S0031-9201(98)00168-X
Evolution of avalanche conducting states in electrorheological liquids
A. Bezryadin, R. Westervelt and M. Tinkham Physical Review E 59 (6) 6896 (1999) https://doi.org/10.1103/PhysRevE.59.6896
Bethe lattice representation for sandpiles
Oscar Sotolongo-Costa, Alexei Vazquez and J. Antoranz Physical Review E 59 (6) 6956 (1999) https://doi.org/10.1103/PhysRevE.59.6956
Emergence of Collective Behavior in Large Chaotic Dynamical Systems
Hugues Chaté International Journal of Modern Physics B 12 (03) 299 (1998) https://doi.org/10.1142/S0217979298000235
How self-organized criticality works: A unified mean-field picture
Alessandro Vespignani and Stefano Zapperi Physical Review E 57 (6) 6345 (1998) https://doi.org/10.1103/PhysRevE.57.6345
Self-Organized Criticality in a Mixed Hierarchical System
M. G. Shnirman and E. M. Blanter Physical Review Letters 81 (24) 5445 (1998) https://doi.org/10.1103/PhysRevLett.81.5445
Flexibility at the Edge of Chaos: a Clear Example from Foraging in Ants
Eric Bonabeau Acta Biotheoretica 45 (1) 29 (1997) https://doi.org/10.1023/A:1000259222500
Aftershock series of event February 18, 1996: An interpretation in terms of self-organized criticality
Antoni M. Correig, Mercè Urquizú, Josep Vila and Susanna C. Manrubia Journal of Geophysical Research 102 (B12) 27407 (1997) https://doi.org/10.1029/97JB02487
Extinction and self-organized criticality in a model of large-scale evolution
Ricard V. Solé and Susanna C. Manrubia Physical Review E 54 (1) R42 (1996) https://doi.org/10.1103/PhysRevE.54.R42
Growth dynamics and morphology of passive films
I. Nainville, A. Lemarchand and J.-P. Badiali Physical Review E 53 (3) 2537 (1996) https://doi.org/10.1103/PhysRevE.53.2537
Landau-Ginzburg Theory of Self-Organized Criticality
L. Gil and D. Sornette Physical Review Letters 76 (21) 3991 (1996) https://doi.org/10.1103/PhysRevLett.76.3991
Passivation of a lithium anode: A simulation model
I. Nainville, A. Lemarchand and J.-P. Badiali Electrochimica Acta 41 (18) 2855 (1996) https://doi.org/10.1016/0013-4686(96)00113-2
Renormalization scheme for self-organized criticality in sandpile models
L. Pietronero, A. Vespignani and S. Zapperi Physical Review Letters 72 (11) 1690 (1994) https://doi.org/10.1103/PhysRevLett.72.1690
Dimension of branching processes and self-organized criticality
Ricardo García-Pelayo Physical Review E 49 (6) 4903 (1994) https://doi.org/10.1103/PhysRevE.49.4903
Statistical physics of fault patterns self-organized by repeated earthquakes
D. Sornette, P. Miltenberger and C. Vanneste pure and applied geophysics 142 (3-4) 491 (1994) https://doi.org/10.1007/BF00876052
Sandpiles and river networks: Extended systems with nonlocal interactions
L. Prigozhin Physical Review E 49 (2) 1161 (1994) https://doi.org/10.1103/PhysRevE.49.1161