Article cité par

La fonctionnalité Article cité par… liste les citations d'un article. Ces citations proviennent de la base de données des articles de EDP Sciences, ainsi que des bases de données d'autres éditeurs participant au programme CrossRef Cited-by Linking Program. Vous pouvez définir une alerte courriel pour être prévenu de la parution d'un nouvel article citant " cet article (voir sur la page du résumé de l'article le menu à droite).

Article cité :

Exact stationary state for an asymmetric exclusion process with fully parallel dynamics

Jan de Gier and Bernard Nienhuis
Physical Review E 59 (5) 4899 (1999)
https://doi.org/10.1103/PhysRevE.59.4899

Jamming Transition in Cellular Automaton Models for Pedestrians on Passageway

Minoru Fukui and Yoshihiro Ishibashi
Journal of the Physical Society of Japan 68 (11) 3738 (1999)
https://doi.org/10.1143/JPSJ.68.3738

Cellular Automata Microsimulation of Bidirectional Pedestrian Flows

Victor J. Blue and Jeffrey L. Adler
Transportation Research Record: Journal of the Transportation Research Board 1678 (1) 135 (1999)
https://doi.org/10.3141/1678-17

Experimental study of a granular flow in a vertical pipe: A spatiotemporal analysis

Jean-Luc Aider, Nathalie Sommier, Tareck Raafat and Jean-Pierre Hulin
Physical Review E 59 (1) 778 (1999)
https://doi.org/10.1103/PhysRevE.59.778

Two-lane traffic rules for cellular automata: A systematic approach

Kai Nagel, Dietrich Wolf, Peter Wagner and Patrice Simon
Physical Review E 58 (2) 1425 (1998)
https://doi.org/10.1103/PhysRevE.58.1425

Burgers equation for kinetic clustering in traffic flow

Takashi Nagatani, Heike Emmerich and Ken Nakanishi
Physica A: Statistical Mechanics and its Applications 255 (1-2) 158 (1998)
https://doi.org/10.1016/S0378-4371(98)00082-X

N-species stochastic models with boundaries and quadratic algebras

F C Alcaraz, S Dasmahapatra and V Rittenberg
Journal of Physics A: Mathematical and General 31 (3) 845 (1998)
https://doi.org/10.1088/0305-4470/31/3/004

Kink Solution in a Fluid Model of Traffic Flow

Shigeaki Wada and Hisao Hayakawa
Journal of the Physical Society of Japan 67 (3) 763 (1998)
https://doi.org/10.1143/JPSJ.67.763

Statistical mechanical approach to cellular automaton models of highway traffic flow

Bing-Hong Wang, Y.R. Kwong and P.M. Hui
Physica A: Statistical Mechanics and its Applications 254 (1-2) 122 (1998)
https://doi.org/10.1016/S0378-4371(98)00027-2

Phase transition in a difference equation model of traffic flow

Takashi Nagatani, Ken Nakanishi and Heike Emmerich
Journal of Physics A: Mathematical and General 31 (24) 5431 (1998)
https://doi.org/10.1088/0305-4470/31/24/005

Statistical mechanical approach to Fukui-Ishibashi traffic flow models

Bing-Hong Wang, Yvonne-Roamy Kwong and Pak-Ming Hui
Physical Review E 57 (3) 2568 (1998)
https://doi.org/10.1103/PhysRevE.57.2568

Phase transition and critical phenomenon in traffic flow model with velocity-dependent sensitivity

Takashi Nagatani
Physica A: Statistical Mechanics and its Applications 253 (1-4) 353 (1998)
https://doi.org/10.1016/S0378-4371(97)00660-2

The diffused city of the Italian North-East: identification of urban dynamics using cellular automata urban models

Elena Besussi, Arnaldo Cecchini and Enrico Rinaldi
Computers, Environment and Urban Systems 22 (5) 497 (1998)
https://doi.org/10.1016/S0198-9715(98)00022-2

Dynamics of Two Equivalent Lanes Traffic Flow Model: Self-Organization of the Slow Lane and Fast Lane

Akinori Awazu
Journal of the Physical Society of Japan 67 (4) 1071 (1998)
https://doi.org/10.1143/JPSJ.67.1071

Coupled Map Traffic Flow Simulator Based on Optimal Velocity Functions

Shin-ichi Tadaki, Macoto Kikuchi, Yuki Sugiyama and Satoshi Yukawa
Journal of the Physical Society of Japan 67 (7) 2270 (1998)
https://doi.org/10.1143/JPSJ.67.2270

Phase diagram of one-dimensional driven lattice gases with open boundaries

Anatoly B Kolomeisky, Gunter M Schütz, Eugene B Kolomeisky and Joseph P Straley
Journal of Physics A: Mathematical and General 31 (33) 6911 (1998)
https://doi.org/10.1088/0305-4470/31/33/003

An Iterative Algorithm to Determine the Dynamic User Equilibrium in a Traffic Simulation Model

C. Gawron
International Journal of Modern Physics C 09 (03) 393 (1998)
https://doi.org/10.1142/S0129183198000303

Density fluctuations and phase transition in the Nagel-Schreckenberg traffic flow model

S. Lübeck, M. Schreckenberg and K. Usadel
Physical Review E 57 (1) 1171 (1998)
https://doi.org/10.1103/PhysRevE.57.1171

Distribution of time-headways in a particle-hopping model of vehicular traffic

Kingshuk Ghosh, Arnab Majumdar and Debashish Chowdhury
Physical Review E 58 (3) 4012 (1998)
https://doi.org/10.1103/PhysRevE.58.4012

Numerical simulations for traffic-flow models on a decorated square lattice

Tsuyoshi Horiguchi and Takehito Sakakibara
Physica A: Statistical Mechanics and its Applications 252 (3-4) 388 (1998)
https://doi.org/10.1016/S0378-4371(97)00628-6

From modified KdV-equation to a second-order cellular automaton for traffic flow

Heike Emmerich and Takashi Nagatani, Ken Nakanishi
Physica A: Statistical Mechanics and its Applications 254 (3-4) 548 (1998)
https://doi.org/10.1016/S0378-4371(98)00060-0

Jamming transition in a cellular automaton model for traffic flow

B. Eisenblätter, L. Santen, A. Schadschneider and M. Schreckenberg
Physical Review E 57 (2) 1309 (1998)
https://doi.org/10.1103/PhysRevE.57.1309

Analytical results for the steady state of traffic flow models with stochastic delay

Bing-Hong Wang, Lei Wang, P. Hui and Bambi Hu
Physical Review E 58 (3) 2876 (1998)
https://doi.org/10.1103/PhysRevE.58.2876

From Particle Hopping Models to Traffic Flow Theory

Kai Nagel
Transportation Research Record: Journal of the Transportation Research Board 1644 (1) 1 (1998)
https://doi.org/10.3141/1644-01

Experiences with a Simplified Microsimulation for the Dallas/Fort-Worth Area

M. Rickert and K. Nagel
International Journal of Modern Physics C 08 (03) 483 (1997)
https://doi.org/10.1142/S0129183197000400

1/fαdensity fluctuation at the slugging transition point of granular flows through a pipe

Akio Nakahara and Takeshi Isoda
Physical Review E 55 (4) 4264 (1997)
https://doi.org/10.1103/PhysRevE.55.4264

Distribution of Jam Clusters in a Two-Dimensional Cellular Automaton Traffic Flow Model with Open Boundaries

Shin-ichi Tadaki
Journal of the Physical Society of Japan 66 (3) 514 (1997)
https://doi.org/10.1143/JPSJ.66.514

Exact steady states of disordered hopping particle models with parallel and ordered sequential dynamics

M R Evans
Journal of Physics A: Mathematical and General 30 (16) 5669 (1997)
https://doi.org/10.1088/0305-4470/30/16/011

Car-oriented mean-field theory for traffic flow models

Andreas Schadschneider and Michael Schreckenberg
Journal of Physics A: Mathematical and General 30 (4) L69 (1997)
https://doi.org/10.1088/0305-4470/30/4/005

Effect of Delay in Restarting of Stopped Cars in a One-Dimensional Traffic Model

Minoru Fukui and Yoshihiro Ishibashi
Journal of the Physical Society of Japan 66 (2) 385 (1997)
https://doi.org/10.1143/JPSJ.66.385

Car accidents and number of stopped cars due to road blockage on a one-lane highway

N Boccara, H Fuks and Q Zeng
Journal of Physics A: Mathematical and General 30 (10) 3329 (1997)
https://doi.org/10.1088/0305-4470/30/10/012

Stochastic traffic model with random deceleration probabilities: queueing and power-law gap distribution

Dmitri V Ktitarev, Debashish Chowdhury and Dietrich E Wolf
Journal of Physics A: Mathematical and General 30 (8) L221 (1997)
https://doi.org/10.1088/0305-4470/30/8/004

Strict derivation of mean field equation for one-dimensional traffic flow model

Wang Lei, Wang Bing-hong and Hui Pak-ming
Acta Physica Sinica (Overseas Edition) 6 (11) 829 (1997)
https://doi.org/10.1088/1004-423X/6/11/004

Particle-hopping models of vehicular traffic: Distributions of distance headways and distance between jams

Debashish Chowdhury, Kingshuk Ghosh, Arnab Majumdar, Shishir Sinha and R.B. Stinchcombe
Physica A: Statistical Mechanics and its Applications 246 (3-4) 471 (1997)
https://doi.org/10.1016/S0378-4371(97)00365-8

One-Dimensional Fukui-Ishibashi Traffic Flow Model

Bing-Hong Wang, Lei Wang and P. M. Hui
Journal of the Physical Society of Japan 66 (11) 3683 (1997)
https://doi.org/10.1143/JPSJ.66.3683

One-Dimensional Traffic Flow Problems: A Microscopic Approach

B. H. Wang and P. M. Hui
Journal of the Physical Society of Japan 66 (5) 1238 (1997)
https://doi.org/10.1143/JPSJ.66.1238

Traffic Flow in 1D Cellular Automaton Model Including Cars Moving with High Speed

Minoru Fukui and Yoshihiro Ishibashi
Journal of the Physical Society of Japan 65 (6) 1868 (1996)
https://doi.org/10.1143/JPSJ.65.1868

Representations of the quadratic algebra and partially asymmetric diffusion with open boundaries

Fabian H L Essler and Vladimir Rittenberg
Journal of Physics A: Mathematical and General 29 (13) 3375 (1996)
https://doi.org/10.1088/0305-4470/29/13/013

The Kasteleyn model and a cellular automaton approach to traffic flow

J G Brankov, V B Priezzhev, A Schadschneider and M Schreckenberg
Journal of Physics A: Mathematical and General 29 (10) L229 (1996)
https://doi.org/10.1088/0305-4470/29/10/002

The green wave model of two-dimensional traffic: Transitions in the flow properties and in the geometry of the traffic jam

János Török and János Kertész
Physica A: Statistical Mechanics and its Applications 231 (4) 515 (1996)
https://doi.org/10.1016/0378-4371(96)00144-6

Phase Diagram for the Traffic Model of Two One-Dimensional Roads with a Crossing

Yoshihiro Ishibashi and Minoru Fukui
Journal of the Physical Society of Japan 65 (9) 2793 (1996)
https://doi.org/10.1143/JPSJ.65.2793

Flow of Cars Crossing with Unequal Velocities in a Two-Dimensional Cellular Automaton Model

Minoru Fukui, Hirokazu Oikawa and Yoshihiro Ishibashi
Journal of the Physical Society of Japan 65 (8) 2514 (1996)
https://doi.org/10.1143/JPSJ.65.2514