La fonctionnalité Article cité par… liste les citations d'un article. Ces citations proviennent de la base de données des articles de EDP Sciences, ainsi que des bases de données d'autres éditeurs participant au programme CrossRef Cited-by Linking Program . Vous pouvez définir une alerte courriel pour être prévenu de la parution d'un nouvel article citant " cet article (voir sur la page du résumé de l'article le menu à droite).
Article cité :
Kai Nagel , Michael Schreckenberg
J. Phys. I France, 2 12 (1992) 2221-2229
Citations de cet article :
2761 articles | Pages :
Exact stationary state for an asymmetric exclusion process with fully parallel dynamics
Jan de Gier and Bernard Nienhuis Physical Review E 59 (5) 4899 (1999) https://doi.org/10.1103/PhysRevE.59.4899
TDGL and MKdV equations for jamming transition in the lattice models of traffic
Takashi Nagatani Physica A: Statistical Mechanics and its Applications 264 (3-4) 581 (1999) https://doi.org/10.1016/S0378-4371(98)00466-X
Dynamic states of a continuum traffic equation with on-ramp
H. Lee, H.-W. Lee and D. Kim Physical Review E 59 (5) 5101 (1999) https://doi.org/10.1103/PhysRevE.59.5101
Jamming Transition in Cellular Automaton Models for Pedestrians on Passageway
Minoru Fukui and Yoshihiro Ishibashi Journal of the Physical Society of Japan 68 (11) 3738 (1999) https://doi.org/10.1143/JPSJ.68.3738
Cellular automata simulating experimental properties of traffic flow
Dirk Helbing and Michael Schreckenberg Physical Review E 59 (3) R2505 (1999) https://doi.org/10.1103/PhysRevE.59.R2505
Chaotic jam and phase transition in traffic flow with passing
Takashi Nagatani Physical Review E 60 (2) 1535 (1999) https://doi.org/10.1103/PhysRevE.60.1535
Cellular Automata Microsimulation of Bidirectional Pedestrian Flows
Victor J. Blue and Jeffrey L. Adler Transportation Research Record: Journal of the Transportation Research Board 1678 (1) 135 (1999) https://doi.org/10.3141/1678-17
Experimental study of a granular flow in a vertical pipe: A spatiotemporal analysis
Jean-Luc Aider, Nathalie Sommier, Tareck Raafat and Jean-Pierre Hulin Physical Review E 59 (1) 778 (1999) https://doi.org/10.1103/PhysRevE.59.778
Two-lane traffic rules for cellular automata: A systematic approach
Kai Nagel, Dietrich Wolf, Peter Wagner and Patrice Simon Physical Review E 58 (2) 1425 (1998) https://doi.org/10.1103/PhysRevE.58.1425
Time-dependent Ginzburg–Landau equation for the jamming transition in traffic flow
Takashi Nagatani Physica A: Statistical Mechanics and its Applications 258 (1-2) 237 (1998) https://doi.org/10.1016/S0378-4371(98)00211-8
Modified KdV equation for jamming transition in the continuum models of traffic
Takashi Nagatani Physica A: Statistical Mechanics and its Applications 261 (3-4) 599 (1998) https://doi.org/10.1016/S0378-4371(98)00347-1
Burgers equation for kinetic clustering in traffic flow
Takashi Nagatani, Heike Emmerich and Ken Nakanishi Physica A: Statistical Mechanics and its Applications 255 (1-2) 158 (1998) https://doi.org/10.1016/S0378-4371(98)00082-X
L. Santen, J. Esser, L. Neubert, J. Wahle, A. Schadschneider and M. Schreckenberg 301 (1998) https://doi.org/10.1108/9780585474182-029
N-species stochastic models with boundaries and quadratic algebras
F C Alcaraz, S Dasmahapatra and V Rittenberg Journal of Physics A: Mathematical and General 31 (3) 845 (1998) https://doi.org/10.1088/0305-4470/31/3/004
L. Santen, J. Esser, L. Neubert, J. Wahle, A. Schadschneider and M. Schreckenberg 301 (1998) https://doi.org/10.1016/B978-008043430-8/50029-0
A five-vertex model interpretation of one-dimensional traffic flow
J G Brankov and M Schreckenberg Journal of Physics A: Mathematical and General 31 (9) 2133 (1998) https://doi.org/10.1088/0305-4470/31/9/005
Kink Solution in a Fluid Model of Traffic Flow
Shigeaki Wada and Hisao Hayakawa Journal of the Physical Society of Japan 67 (3) 763 (1998) https://doi.org/10.1143/JPSJ.67.763
Exact results for car accidents in a traffic model
Ding-wei Huang Journal of Physics A: Mathematical and General 31 (29) 6167 (1998) https://doi.org/10.1088/0305-4470/31/29/008
Statistical mechanical approach to cellular automaton models of highway traffic flow
Bing-Hong Wang, Y.R. Kwong and P.M. Hui Physica A: Statistical Mechanics and its Applications 254 (1-2) 122 (1998) https://doi.org/10.1016/S0378-4371(98)00027-2
Steady-state properties of traffic flows
E Ben-Naim and P L Krapivsky Journal of Physics A: Mathematical and General 31 (40) 8073 (1998) https://doi.org/10.1088/0305-4470/31/40/004
Phase transition in a difference equation model of traffic flow
Takashi Nagatani, Ken Nakanishi and Heike Emmerich Journal of Physics A: Mathematical and General 31 (24) 5431 (1998) https://doi.org/10.1088/0305-4470/31/24/005
Cellular automaton rules conserving the number of active sites
Nino Boccara and Henryk Fuks Journal of Physics A: Mathematical and General 31 (28) 6007 (1998) https://doi.org/10.1088/0305-4470/31/28/014
Statistical mechanical approach to Fukui-Ishibashi traffic flow models
Bing-Hong Wang, Yvonne-Roamy Kwong and Pak-Ming Hui Physical Review E 57 (3) 2568 (1998) https://doi.org/10.1103/PhysRevE.57.2568
J. Rajchenbach 421 (1998) https://doi.org/10.1007/978-94-017-2653-5_31
Phase transition and critical phenomenon in traffic flow model with velocity-dependent sensitivity
Takashi Nagatani Physica A: Statistical Mechanics and its Applications 253 (1-4) 353 (1998) https://doi.org/10.1016/S0378-4371(97)00660-2
The diffused city of the Italian North-East: identification of urban dynamics using cellular automata urban models
Elena Besussi, Arnaldo Cecchini and Enrico Rinaldi Computers, Environment and Urban Systems 22 (5) 497 (1998) https://doi.org/10.1016/S0198-9715(98)00022-2
Dynamics of Two Equivalent Lanes Traffic Flow Model: Self-Organization of the Slow Lane and Fast Lane
Akinori Awazu Journal of the Physical Society of Japan 67 (4) 1071 (1998) https://doi.org/10.1143/JPSJ.67.1071
Relaxation Criteria for Iterated Traffic Simulations
Terence Kelly and Kai Nagel International Journal of Modern Physics C 09 (01) 113 (1998) https://doi.org/10.1142/S0129183198000108
Garden of Eden states in traffic models
Andreas Schadschneider and Michael Schreckenberg Journal of Physics A: Mathematical and General 31 (11) L225 (1998) https://doi.org/10.1088/0305-4470/31/11/003
Phase transition and critical phenomenon in the power-law model of traffic
Takashi Nagatani Physica A: Statistical Mechanics and its Applications 248 (3-4) 353 (1998) https://doi.org/10.1016/S0378-4371(98)00541-X
Coupled Map Traffic Flow Simulator Based on Optimal Velocity Functions
Shin-ichi Tadaki, Macoto Kikuchi, Yuki Sugiyama and Satoshi Yukawa Journal of the Physical Society of Japan 67 (7) 2270 (1998) https://doi.org/10.1143/JPSJ.67.2270
Phase diagram of one-dimensional driven lattice gases with open boundaries
Anatoly B Kolomeisky, Gunter M Schütz, Eugene B Kolomeisky and Joseph P Straley Journal of Physics A: Mathematical and General 31 (33) 6911 (1998) https://doi.org/10.1088/0305-4470/31/33/003
An Iterative Algorithm to Determine the Dynamic User Equilibrium in a Traffic Simulation Model
C. Gawron International Journal of Modern Physics C 09 (03) 393 (1998) https://doi.org/10.1142/S0129183198000303
Delay effect on phase transitions in traffic dynamics
Takashi Nagatani and Ken Nakanishi Physical Review E 57 (6) 6415 (1998) https://doi.org/10.1103/PhysRevE.57.6415
Density fluctuations and phase transition in the Nagel-Schreckenberg traffic flow model
S. Lübeck, M. Schreckenberg and K. Usadel Physical Review E 57 (1) 1171 (1998) https://doi.org/10.1103/PhysRevE.57.1171
Distribution of time-headways in a particle-hopping model of vehicular traffic
Kingshuk Ghosh, Arnab Majumdar and Debashish Chowdhury Physical Review E 58 (3) 4012 (1998) https://doi.org/10.1103/PhysRevE.58.4012
Numerical simulations for traffic-flow models on a decorated square lattice
Tsuyoshi Horiguchi and Takehito Sakakibara Physica A: Statistical Mechanics and its Applications 252 (3-4) 388 (1998) https://doi.org/10.1016/S0378-4371(97)00628-6
Asymptotic solutions for a multi-anticipative car-following model
Christoph Wagner Physica A: Statistical Mechanics and its Applications 260 (1-2) 218 (1998) https://doi.org/10.1016/S0378-4371(98)00306-9
From modified KdV-equation to a second-order cellular automaton for traffic flow
Heike Emmerich and Takashi Nagatani, Ken Nakanishi Physica A: Statistical Mechanics and its Applications 254 (3-4) 548 (1998) https://doi.org/10.1016/S0378-4371(98)00060-0
Thermodynamic theory for the jamming transition in traffic flow
Takashi Nagatani Physical Review E 58 (4) 4271 (1998) https://doi.org/10.1103/PhysRevE.58.4271
Jamming transition in a cellular automaton model for traffic flow
B. Eisenblätter, L. Santen, A. Schadschneider and M. Schreckenberg Physical Review E 57 (2) 1309 (1998) https://doi.org/10.1103/PhysRevE.57.1309
Analytical results for the steady state of traffic flow models with stochastic delay
Bing-Hong Wang, Lei Wang, P. Hui and Bambi Hu Physical Review E 58 (3) 2876 (1998) https://doi.org/10.1103/PhysRevE.58.2876
Origin of Synchronized Traffic Flow on Highways and Its Dynamic Phase Transitions
H. Lee, H.-W. Lee and D. Kim Physical Review Letters 81 (5) 1130 (1998) https://doi.org/10.1103/PhysRevLett.81.1130
Cellular automaton model for bidirectional traffic
P. Simon and H. Gutowitz Physical Review E 57 (2) 2441 (1998) https://doi.org/10.1103/PhysRevE.57.2441
Simplified cellular automaton model for city traffic
P. Simon and K. Nagel Physical Review E 58 (2) 1286 (1998) https://doi.org/10.1103/PhysRevE.58.1286
Local cluster effect in different traffic flow models
Matthias Herrmann and Boris S Kerner Physica A: Statistical Mechanics and its Applications 255 (1-2) 163 (1998) https://doi.org/10.1016/S0378-4371(98)00102-2
From Particle Hopping Models to Traffic Flow Theory
Kai Nagel Transportation Research Record: Journal of the Transportation Research Board 1644 (1) 1 (1998) https://doi.org/10.3141/1644-01
Jams, Waves, and Clusters
Dirk Helbing and Martin Treiber Science 282 (5396) 2001 (1998) https://doi.org/10.1126/science.282.5396.2001
Instability of a Traffic Jam Induced by Slowing Down
Takashi Nagatani Journal of the Physical Society of Japan 66 (7) 1928 (1997) https://doi.org/10.1143/JPSJ.66.1928
Experiences with a Simplified Microsimulation for the Dallas/Fort-Worth Area
M. Rickert and K. Nagel International Journal of Modern Physics C 08 (03) 483 (1997) https://doi.org/10.1142/S0129183197000400
Microscopic Simulation of Urban Traffic Based on Cellular Automata
J. Esser and M. Schreckenberg International Journal of Modern Physics C 08 (05) 1025 (1997) https://doi.org/10.1142/S0129183197000904
1/fαdensity fluctuation at the slugging transition point of granular flows through a pipe
Akio Nakahara and Takeshi Isoda Physical Review E 55 (4) 4264 (1997) https://doi.org/10.1103/PhysRevE.55.4264
Solvable optimal velocity models and asymptotic trajectory
Ken Nakanishi, Katsumi Itoh, Yuji Igarashi and Masako Bando Physical Review E 55 (6) 6519 (1997) https://doi.org/10.1103/PhysRevE.55.6519
Distribution of Jam Clusters in a Two-Dimensional Cellular Automaton Traffic Flow Model with Open Boundaries
Shin-ichi Tadaki Journal of the Physical Society of Japan 66 (3) 514 (1997) https://doi.org/10.1143/JPSJ.66.514
G.J. Milne 260 (1997) https://doi.org/10.1109/HIPC.1997.634501
Kai Nagel, Marcus Rickert and Christopher L. Barrett 1215 380 (1997) https://doi.org/10.1007/3-540-62828-2_131
An improved cellular automaton model for traffic flow simulation
H. Emmerich and E. Rank Physica A: Statistical Mechanics and its Applications 234 (3-4) 676 (1997) https://doi.org/10.1016/S0378-4371(96)00310-X
Exact steady states of disordered hopping particle models with parallel and ordered sequential dynamics
M R Evans Journal of Physics A: Mathematical and General 30 (16) 5669 (1997) https://doi.org/10.1088/0305-4470/30/16/011
Car-oriented mean-field theory for traffic flow models
Andreas Schadschneider and Michael Schreckenberg Journal of Physics A: Mathematical and General 30 (4) L69 (1997) https://doi.org/10.1088/0305-4470/30/4/005
Self-organized criticality in 1D stochastic traffic flow model
N.C. Pesheva, D.P. Daneva and J.G. Brankov Reports on Mathematical Physics 40 (3) 509 (1997) https://doi.org/10.1016/S0034-4877(97)85900-9
Stochastic master-equation approach to aggregation in freeway traffic
R. Mahnke and N. Pieret Physical Review E 56 (3) 2666 (1997) https://doi.org/10.1103/PhysRevE.56.2666
Cellular automata models of single-lane traffic
Márton Sasvári and János Kertész Physical Review E 56 (4) 4104 (1997) https://doi.org/10.1103/PhysRevE.56.4104
Effect of Delay in Restarting of Stopped Cars in a One-Dimensional Traffic Model
Minoru Fukui and Yoshihiro Ishibashi Journal of the Physical Society of Japan 66 (2) 385 (1997) https://doi.org/10.1143/JPSJ.66.385
Stationary velocity distributions in traffic flows
E. Ben-Naim and P. L. Krapivsky Physical Review E 56 (6) 6680 (1997) https://doi.org/10.1103/PhysRevE.56.6680
Successive deceleration in Boltzmann-like traffic equations
C. Wagner Physical Review E 55 (6) 6969 (1997) https://doi.org/10.1103/PhysRevE.55.6969
Towards a Unified View of Microscopic Traffic Flow Theories
S. Krauß IFAC Proceedings Volumes 30 (8) 901 (1997) https://doi.org/10.1016/S1474-6670(17)43936-X
Traffic flow models with ‘slow‐to‐start’ rules
Andreas Schadschneider and Michael Schreckenberg Annalen der Physik 509 (7) 541 (1997) https://doi.org/10.1002/andp.19975090703
CATS: A Complex Adaptive Traffic Simulator
F. Archetti, E. Messina, B. Mishra and F. Stella IFAC Proceedings Volumes 30 (8) 1271 (1997) https://doi.org/10.1016/S1474-6670(17)43996-6
Deadlocks and waiting times in traffic jam
Sutapa Mukherji and Somendra M. Bhattacharjee Physica A: Statistical Mechanics and its Applications 245 (3-4) 534 (1997) https://doi.org/10.1016/S0378-4371(97)00383-X
Metastable states in a microscopic model of traffic flow
S. Krauss, P. Wagner and C. Gawron Physical Review E 55 (5) 5597 (1997) https://doi.org/10.1103/PhysRevE.55.5597
Simple and exactly solvable model for queue dynamics
Yu-barki Sugiyama and Hiroyasu Yamada Physical Review E 55 (6) 7749 (1997) https://doi.org/10.1103/PhysRevE.55.7749
Dynamical Evolution of Highway Traffic Flow: from Microscopic to Macroscopic
Wang Bing-hong, Hui Pak-ming and Gu Guo-qing Chinese Physics Letters 14 (3) 202 (1997) https://doi.org/10.1088/0256-307X/14/3/012
Car accidents and number of stopped cars due to road blockage on a one-lane highway
N Boccara, H Fuks and Q Zeng Journal of Physics A: Mathematical and General 30 (10) 3329 (1997) https://doi.org/10.1088/0305-4470/30/10/012
Realistic multi-lane traffic rules for cellular automata
Peter Wagner, Kai Nagel and Dietrich E. Wolf Physica A: Statistical Mechanics and its Applications 234 (3-4) 687 (1997) https://doi.org/10.1016/S0378-4371(96)00308-1
A Navier-Stokes-like traffic model
C. Wagner Physica A: Statistical Mechanics and its Applications 245 (1-2) 124 (1997) https://doi.org/10.1016/S0378-4371(97)00182-9
Stochastic traffic model with random deceleration probabilities: queueing and power-law gap distribution
Dmitri V Ktitarev, Debashish Chowdhury and Dietrich E Wolf Journal of Physics A: Mathematical and General 30 (8) L221 (1997) https://doi.org/10.1088/0305-4470/30/8/004
Phase transition and scaling in the generalized traffic flow model
Takashi Nagatani Physica A: Statistical Mechanics and its Applications 246 (3-4) 460 (1997) https://doi.org/10.1016/S0378-4371(97)00376-2
Path functional theory for optimal transport in steady state urban traffic networks
H. Lehmann Physica A: Statistical Mechanics and its Applications 247 (1-4) 405 (1997) https://doi.org/10.1016/S0378-4371(97)00396-8
Strict derivation of mean field equation for one-dimensional traffic flow model
Wang Lei, Wang Bing-hong and Hui Pak-ming Acta Physica Sinica (Overseas Edition) 6 (11) 829 (1997) https://doi.org/10.1088/1004-423X/6/11/004
Particle-hopping models of vehicular traffic: Distributions of distance headways and distance between jams
Debashish Chowdhury, Kingshuk Ghosh, Arnab Majumdar, Shishir Sinha and R.B. Stinchcombe Physica A: Statistical Mechanics and its Applications 246 (3-4) 471 (1997) https://doi.org/10.1016/S0378-4371(97)00365-8
One-Dimensional Fukui-Ishibashi Traffic Flow Model
Bing-Hong Wang, Lei Wang and P. M. Hui Journal of the Physical Society of Japan 66 (11) 3683 (1997) https://doi.org/10.1143/JPSJ.66.3683
D. Weaire, S. Hutzler, G. Verbist and E. Peters 102 315 (1997) https://doi.org/10.1002/9780470141618.ch5
Asymptotic theory of traffic jams
B. S. Kerner, S. L. Klenov and P. Konhäuser Physical Review E 56 (4) 4200 (1997) https://doi.org/10.1103/PhysRevE.56.4200
One-Dimensional Traffic Flow Problems: A Microscopic Approach
B. H. Wang and P. M. Hui Journal of the Physical Society of Japan 66 (5) 1238 (1997) https://doi.org/10.1143/JPSJ.66.1238
Dietrich Stauffer 339 (1996) https://doi.org/10.1007/978-3-642-84868-1_9
Derivation and empirical validation of a refined traffic flow model
Dirk Helbing Physica A: Statistical Mechanics and its Applications 233 (1-2) 253 (1996) https://doi.org/10.1016/S0378-4371(96)00228-2
Backbones of traffic jams
Himadri Shikhar Gupta and Ramakrishna Ramaswamy Journal of Physics A: Mathematical and General 29 (21) L547 (1996) https://doi.org/10.1088/0305-4470/29/21/003
Particle hopping models and traffic flow theory
Kai Nagel Physical Review E 53 (5) 4655 (1996) https://doi.org/10.1103/PhysRevE.53.4655
Experimental features and characteristics of traffic jams
B. S. Kerner and H. Rehborn Physical Review E 53 (2) R1297 (1996) https://doi.org/10.1103/PhysRevE.53.R1297
Traffic Flow in 1D Cellular Automaton Model Including Cars Moving with High Speed
Minoru Fukui and Yoshihiro Ishibashi Journal of the Physical Society of Japan 65 (6) 1868 (1996) https://doi.org/10.1143/JPSJ.65.1868
Hans J. Herrmann 476 23 (1996) https://doi.org/10.1007/BFb0105426
Representations of the quadratic algebra and partially asymmetric diffusion with open boundaries
Fabian H L Essler and Vladimir Rittenberg Journal of Physics A: Mathematical and General 29 (13) 3375 (1996) https://doi.org/10.1088/0305-4470/29/13/013
Effect of Reduced Randomness on Jam in a Two-Dimensional Traffic Model
Journal of the Physical Society of Japan 65 (6) 1871 (1996) https://doi.org/10.1143/JPSJ.65.1871
The Kasteleyn model and a cellular automaton approach to traffic flow
J G Brankov, V B Priezzhev, A Schadschneider and M Schreckenberg Journal of Physics A: Mathematical and General 29 (10) L229 (1996) https://doi.org/10.1088/0305-4470/29/10/002
The green wave model of two-dimensional traffic: Transitions in the flow properties and in the geometry of the traffic jam
János Török and János Kertész Physica A: Statistical Mechanics and its Applications 231 (4) 515 (1996) https://doi.org/10.1016/0378-4371(96)00144-6
Continuous limit of the Nagel-Schreckenberg model
S. Krauss, P. Wagner and C. Gawron Physical Review E 54 (4) 3707 (1996) https://doi.org/10.1103/PhysRevE.54.3707
Density Fluctuations in Traffic Flow
Satoshi Yukawa and Macoto Kikuchi Journal of the Physical Society of Japan 65 (4) 916 (1996) https://doi.org/10.1143/JPSJ.65.916
David F. Batten 1 (1996) https://doi.org/10.1007/978-3-642-80266-9_1
Phase Diagram for the Traffic Model of Two One-Dimensional Roads with a Crossing
Yoshihiro Ishibashi and Minoru Fukui Journal of the Physical Society of Japan 65 (9) 2793 (1996) https://doi.org/10.1143/JPSJ.65.2793
Flow of Cars Crossing with Unequal Velocities in a Two-Dimensional Cellular Automaton Model
Minoru Fukui, Hirokazu Oikawa and Yoshihiro Ishibashi Journal of the Physical Society of Japan 65 (8) 2514 (1996) https://doi.org/10.1143/JPSJ.65.2514
Pages :
2601 à 2700 sur 2761 articles