La fonctionnalité Article cité par… liste les citations d'un article. Ces citations proviennent de la base de données des articles de EDP Sciences, ainsi que des bases de données d'autres éditeurs participant au programme CrossRef Cited-by Linking Program . Vous pouvez définir une alerte courriel pour être prévenu de la parution d'un nouvel article citant " cet article (voir sur la page du résumé de l'article le menu à droite).
Article cité :
Kai Nagel , Michael Schreckenberg
J. Phys. I France, 2 12 (1992) 2221-2229
Citations de cet article :
2761 articles | Pages :
Bose-Einstein condensation in disordered exclusion models and relation to traffic flow
M. R Evans Europhysics Letters (EPL) 36 (1) 13 (1996) https://doi.org/10.1209/epl/i1996-00180-y
Kinetics of segregation in a two-lane highway traffic flow
Takashi Nagatani Journal of Physics A: Mathematical and General 29 (20) 6531 (1996) https://doi.org/10.1088/0305-4470/29/20/011
Cellular automata model of car traffic in a two-dimensional street network
B Chopard, P O Luthi and P-A Queloz Journal of Physics A: Mathematical and General 29 (10) 2325 (1996) https://doi.org/10.1088/0305-4470/29/10/012
Two-dimensional cellular automaton model of traffic flow with open boundaries
Shin-ichi Tadaki Physical Review E 54 (3) 2409 (1996) https://doi.org/10.1103/PhysRevE.54.2409
Density waves in dry granular media falling through a vertical pipe
T. Raafat, J. P. Hulin and H. J. Herrmann Physical Review E 53 (5) 4345 (1996) https://doi.org/10.1103/PhysRevE.53.4345
Distribution function properties and the fundamental diagram in kinetic traffic flow theory
H. Lehmann Physical Review E 54 (6) 6058 (1996) https://doi.org/10.1103/PhysRevE.54.6058
Improved mean-field theory of two-dimensional traffic flow models
B H Wang, Y F Woo and P M Hui Journal of Physics A: Mathematical and General 29 (2) L31 (1996) https://doi.org/10.1088/0305-4470/29/2/002
Two lane traffic simulations using cellular automata
M. Rickert, K. Nagel, M. Schreckenberg and A. Latour Physica A: Statistical Mechanics and its Applications 231 (4) 534 (1996) https://doi.org/10.1016/0378-4371(95)00442-4
Second-order continuum traffic flow model
C. Wagner, C. Hoffmann, R. Sollacher, J. Wagenhuber and B. Schürmann Physical Review E 54 (5) 5073 (1996) https://doi.org/10.1103/PhysRevE.54.5073
Gas Kinetic Approach to Two-Dimensional Traffic Flow
Takashi Nagatani Journal of the Physical Society of Japan 65 (10) 3150 (1996) https://doi.org/10.1143/JPSJ.65.3150
Traverse Time in a Cellular Automaton Traffic Model
Yoshihiro Ishibashi and Minoru Fukui Journal of the Physical Society of Japan 65 (6) 1878 (1996) https://doi.org/10.1143/JPSJ.65.1878
Gas-kinetic derivation of Navier-Stokes-like traffic equations
Dirk Helbing Physical Review E 53 (3) 2366 (1996) https://doi.org/10.1103/PhysRevE.53.2366
Propagation of Jams in Congested Traffic Flow
Takashi Nagatani Journal of the Physical Society of Japan 65 (7) 2333 (1996) https://doi.org/10.1143/JPSJ.65.2333
A. Bachem, C. Gawron, C. Moll, M. Rickert and P. Wagner 1067 306 (1996) https://doi.org/10.1007/3-540-61142-8_563
Discrete stochastic models for traffic flow
M. Schreckenberg, A. Schadschneider, K. Nagel and N. Ito Physical Review E 51 (4) 2939 (1995) https://doi.org/10.1103/PhysRevE.51.2939
Theoretical approach to two-dimensional traffic flow models
Juan M. Molera, Froilán C. Martínez, José A. Cuesta and Ricardo Brito Physical Review E 51 (1) 175 (1995) https://doi.org/10.1103/PhysRevE.51.175
Emergent traffic jams
Kai Nagel and Maya Paczuski Physical Review E 51 (4) 2909 (1995) https://doi.org/10.1103/PhysRevE.51.2909
Random versus deterministic two-dimensional traffic flow models
Froilán C. Martínez, José A. Cuesta, Juan M. Molera and Ricardo Brito Physical Review E 51 (2) R835 (1995) https://doi.org/10.1103/PhysRevE.51.R835
Dynamical model of traffic congestion and numerical simulation
M. Bando, K. Hasebe, A. Nakayama, A. Shibata and Y. Sugiyama Physical Review E 51 (2) 1035 (1995) https://doi.org/10.1103/PhysRevE.51.1035
Density waves and 1/f density fluctuations in granular flow
Gongwen Peng and Hans Herrmann Physical Review E 51 (3) 1745 (1995) https://doi.org/10.1103/PhysRevE.51.1745
Theoretical foundation of macroscopic traffic models
Dirk Helbing Physica A: Statistical Mechanics and its Applications 219 (3-4) 375 (1995) https://doi.org/10.1016/0378-4371(95)00174-6
1/fnoise in a two-lane highway traffic model
Xingzhi Zhang and Gang Hu Physical Review E 52 (5) 4664 (1995) https://doi.org/10.1103/PhysRevE.52.4664
Self-organized criticality in 1D traffic flow model with inflow or outflow
T Nagatani Journal of Physics A: Mathematical and General 28 (4) L119 (1995) https://doi.org/10.1088/0305-4470/28/4/002
Self-Organization in a Two-Dimensional Cellular Automaton Model of Traffic Flow
Shin-ichi Tadaki and Macoto Kikuchi Journal of the Physical Society of Japan 64 (12) 4504 (1995) https://doi.org/10.1143/JPSJ.64.4504
Coupled-Map Modeling of One-Dimensional Traffic Flow
Satoshi Yukawa and Macoto Kikuchi Journal of the Physical Society of Japan 64 (1) 35 (1995) https://doi.org/10.1143/JPSJ.64.35
Scaling behaviour in discrete traffic models
G Csanyi and J Kertesz Journal of Physics A: Mathematical and General 28 (16) L427 (1995) https://doi.org/10.1088/0305-4470/28/16/002
Bunching of cars in asymmetric exclusion models for freeway traffic
Takashi Nagatani Physical Review E 51 (2) 922 (1995) https://doi.org/10.1103/PhysRevE.51.922
Social force model for pedestrian dynamics
Dirk Helbing and Péter Molnár Physical Review E 51 (5) 4282 (1995) https://doi.org/10.1103/PhysRevE.51.4282
Upper Bounds for the Critical Car Densities in Traffic Flow Problems
H. F. Chau, P. M. Hui and Y. F. Woo Journal of the Physical Society of Japan 64 (9) 3570 (1995) https://doi.org/10.1143/JPSJ.64.3570
Diffusion-annihilation in the presence of a driving field
G M Schutz Journal of Physics A: Mathematical and General 28 (12) 3405 (1995) https://doi.org/10.1088/0305-4470/28/12/014
Self-Organized Criticality and Scaling in Lifetime of Traffic Jams
Takashi Nagatani Journal of the Physical Society of Japan 64 (1) 31 (1995) https://doi.org/10.1143/JPSJ.64.31
Haichen Xu and D.J. Dailey 194 (1995) https://doi.org/10.1109/VNIS.1995.518838
Deterministic spontaneous appearance of traffic jams in slightly inhomogeneous traffic flow
B. S. Kerner, P. Konhäuser and M. Schilke Physical Review E 51 (6) 6243 (1995) https://doi.org/10.1103/PhysRevE.51.6243
Traffic flow and 1/ffluctuations
M. Y. Choi and H. Y. Lee Physical Review E 52 (6) 5979 (1995) https://doi.org/10.1103/PhysRevE.52.5979
H. J. Herrmann 448 67 (1995) https://doi.org/10.1007/3-540-59178-8_28
Kink soliton characterizing traffic congestion
Teruhisa S. Komatsu and Shin-ichi Sasa Physical Review E 52 (5) 5574 (1995) https://doi.org/10.1103/PhysRevE.52.5574
Creation and annihilation of traffic jams in a stochastic asymmetric exclusion model with open boundaries: a computer simulation
T Nagatani Journal of Physics A: Mathematical and General 28 (24) 7079 (1995) https://doi.org/10.1088/0305-4470/28/24/008
Improved fluid-dynamic model for vehicular traffic
Dirk Helbing Physical Review E 51 (4) 3164 (1995) https://doi.org/10.1103/PhysRevE.51.3164
Density waves of granular flow in a pipe using lattice-gas automata
Gongwen Peng and Hans J. Herrmann Physical Review E 49 (3) R1796 (1994) https://doi.org/10.1103/PhysRevE.49.R1796
Traffic models with disorder
Z Csahok and T Vicsek Journal of Physics A: Mathematical and General 27 (16) L591 (1994) https://doi.org/10.1088/0305-4470/27/16/005
1/f noise in computer network traffic
I Csabai Journal of Physics A: Mathematical and General 27 (12) L417 (1994) https://doi.org/10.1088/0305-4470/27/12/004
Traffic Flow Problems in One-Dimensional Inhomogeneous Media
K. H. Chung and P. M. Hui Journal of the Physical Society of Japan 63 (12) 4338 (1994) https://doi.org/10.1143/JPSJ.63.4338
Partially asymmetric exclusion process with open boundaries
Sven Sandow Physical Review E 50 (4) 2660 (1994) https://doi.org/10.1103/PhysRevE.50.2660
Long time, large scale properties of the noisy driven-diffusion equation
Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences 446 (1926) 67 (1994) https://doi.org/10.1098/rspa.1994.0092
Jörg-Thomas Pfenning 797 316 (1994) https://doi.org/10.1007/3-540-57981-8_136
Kinetics of clustering in traffic flows
E. Ben-Naim, P. L. Krapivsky, and S. Redner Physical Review E 50 (2) 822 (1994) https://doi.org/10.1103/PhysRevE.50.822
Cellular automata models for general traffic conditions on a line
L.C.Q. Vilar and A.M.C. de Souza Physica A: Statistical Mechanics and its Applications 211 (1) 84 (1994) https://doi.org/10.1016/0378-4371(94)90069-8
The cell transmission model: A dynamic representation of highway traffic consistent with the hydrodynamic theory
Carlos F. Daganzo Transportation Research Part B: Methodological 28 (4) 269 (1994) https://doi.org/10.1016/0191-2615(94)90002-7
Self-reorganizations in a simple model of the immune system
Eric Bonabeau Physica A: Statistical Mechanics and its Applications 208 (3-4) 336 (1994) https://doi.org/10.1016/0378-4371(94)00044-1
Competition and cooperation on a toy Autobahn model
Stefan Migowsky, Thorsten Wanschura and P�l Ruj�n Zeitschrift f�r Physik B Condensed Matter 95 (3) 407 (1994) https://doi.org/10.1007/BF01343969
G. Cameron, B.J.N. Wylie and D. McArthur 291 (1994) https://doi.org/10.1109/SUPERC.1994.344292
Pattern-formation characteristics of interacting kinematic waves
Michael Leibig Physical Review E 49 (1) 184 (1994) https://doi.org/10.1103/PhysRevE.49.184
Jam phases in a two-dimensional cellular-automaton model of traffic flow
Shin-ichi Tadaki and Macoto Kikuchi Physical Review E 50 (6) 4564 (1994) https://doi.org/10.1103/PhysRevE.50.4564
Structure and parameters of clusters in traffic flow
B. S. Kerner and P. Konhäuser Physical Review E 50 (1) 54 (1994) https://doi.org/10.1103/PhysRevE.50.54
Traffic jam induced by a crosscut road in a traffic-flow model
Takashi Nagatani and Tadachika Seno Physica A: Statistical Mechanics and its Applications 207 (4) 574 (1994) https://doi.org/10.1016/0378-4371(94)90211-9
Microscopic traffic modeling on parallel high performance computers
K Nagel and A Schleicher Parallel Computing 20 (1) 125 (1994) https://doi.org/10.1016/0167-8191(94)90117-1
Shock formation and traffic jam induced by a crossing in the 1D asymmetric exclusion model
T Nagatani Journal of Physics A: Mathematical and General 26 (23) 6625 (1993) https://doi.org/10.1088/0305-4470/26/23/013
Cellular automation models and traffic flow
A Schadschneider and M Schreckenberg Journal of Physics A: Mathematical and General 26 (15) L679 (1993) https://doi.org/10.1088/0305-4470/26/15/011
Lattice Boltzmann models for complex fluids
E.G. Flekkøy and H.J. Herrmann Physica A: Statistical Mechanics and its Applications 199 (1) 1 (1993) https://doi.org/10.1016/0378-4371(93)90091-H
Phase transitions in two-dimensional traffic-flow models
José A. Cuesta, Froilán C. Martínez, Juan M. Molera and Angel Sánchez Physical Review E 48 (6) R4175 (1993) https://doi.org/10.1103/PhysRevE.48.R4175
Clustering of Cars in Cellular Automaton Model of Freeway Traffic
Takashi Nagatani Journal of the Physical Society of Japan 62 (11) 3837 (1993) https://doi.org/10.1143/JPSJ.62.3837
Pages :
2701 à 2761 sur 2761 articles