Article cité par

La fonctionnalité Article cité par… liste les citations d'un article. Ces citations proviennent de la base de données des articles de EDP Sciences, ainsi que des bases de données d'autres éditeurs participant au programme CrossRef Cited-by Linking Program. Vous pouvez définir une alerte courriel pour être prévenu de la parution d'un nouvel article citant " cet article (voir sur la page du résumé de l'article le menu à droite).

Article cité :

Continuous differentiability of a weak solution to very singular elliptic equations involving anisotropic diffusivity

Shuntaro Tsubouchi
Advances in Calculus of Variations 17 (3) 881 (2024)
https://doi.org/10.1515/acv-2022-0072

Hybrid Approach for the Time-Dependent Fractional Advection–Diffusion Equation Using Conformable Derivatives

André Soledade, Antônio José da Silva Neto and Davidson Martins Moreira
Pure and Applied Geophysics 181 (11) 3279 (2024)
https://doi.org/10.1007/s00024-024-03580-3

An Introduction to Anomalous Diffusion and Relaxation

Luiz Roberto Evangelista and Ervin Kaminski Lenzi
PoliTO Springer Series, An Introduction to Anomalous Diffusion and Relaxation 71 (2023)
https://doi.org/10.1007/978-3-031-18150-4_2

An Introduction to Anomalous Diffusion and Relaxation

Luiz Roberto Evangelista and Ervin Kaminski Lenzi
PoliTO Springer Series, An Introduction to Anomalous Diffusion and Relaxation 109 (2023)
https://doi.org/10.1007/978-3-031-18150-4_3

The fourth-order total variation flow in $ \mathbb{R}^n $

Yoshikazu Giga, Hirotoshi Kuroda and Michał Łasica
Mathematics in Engineering 5 (6) 1 (2023)
https://doi.org/10.3934/mine.2023091

Smooth, cusped and sharp shock waves in a one-dimensional model of a microfluidic drop ensemble

J.I. Ramos
International Journal of Numerical Methods for Heat & Fluid Flow 32 (1) 150 (2022)
https://doi.org/10.1108/HFF-11-2020-0688

An Approach for the Atmospheric Pollutant Dispersion Equation Considering Anomalous Diffusion in Strongly Unstable Conditions

Davidson Martins Moreira
Pure and Applied Geophysics 179 (4) 1433 (2022)
https://doi.org/10.1007/s00024-022-02986-1

Space–time fractional diffusion equations in d-dimensions

E. K. Lenzi and L. R. Evangelista
Journal of Mathematical Physics 62 (8) (2021)
https://doi.org/10.1063/5.0051449

Stationary solution and H theorem for a generalized Fokker-Planck equation

Max Jauregui, Anna L. F. Lucchi, Jean H. Y. Passos and Renio S. Mendes
Physical Review E 104 (3) (2021)
https://doi.org/10.1103/PhysRevE.104.034130

Stochastic Representation and Monte Carlo Simulation for Multiterm Time-Fractional Diffusion Equation

Longjin Lv and Luna Wang
Advances in Mathematical Physics 2020 1 (2020)
https://doi.org/10.1155/2020/1315426

Analysis of a continuum theory for broken bond crystal surface models with evaporation and deposition effects

Yuan Gao, Jian-Guo Liu, Jianfeng Lu and Jeremy L Marzuola
Nonlinearity 33 (8) 3816 (2020)
https://doi.org/10.1088/1361-6544/ab853d

Asymmetry in crystal facet dynamics of homoepitaxy by a continuum model

Jian-Guo Liu, Jianfeng Lu, Dionisios Margetis and Jeremy L. Marzuola
Physica D: Nonlinear Phenomena 393 54 (2019)
https://doi.org/10.1016/j.physd.2019.01.004

A C0 interior penalty discontinuous Galerkin method for fourth‐order total variation flow. I: Derivation of the method and numerical results

Chandi Bhandari, Ronald H.W. Hoppe and Rahul Kumar
Numerical Methods for Partial Differential Equations 35 (4) 1458 (2019)
https://doi.org/10.1002/num.22359

Random Walks Associated with Nonlinear Fokker–Planck Equations

Renio dos Santos Mendes, Ervin Lenzi, Luis Malacarne, Sergio Picoli and Max Jauregui
Entropy 19 (4) 155 (2017)
https://doi.org/10.3390/e19040155

Intermittent Motion, Nonlinear Diffusion Equation and Tsallis Formalism

Ervin Lenzi, Luciano Da Silva, Marcelo Lenzi, Maike Dos Santos, Haroldo Ribeiro and Luiz Evangelista
Entropy 19 (1) 42 (2017)
https://doi.org/10.3390/e19010042

Relaxation of charge in monolayer graphene: Fast nonlinear diffusion versus Coulomb effects

Eugene B. Kolomeisky and Joseph P. Straley
Physical Review B 95 (4) (2017)
https://doi.org/10.1103/PhysRevB.95.045415

Nonlinear inhomogeneous Fokker-Planck equations: Entropy and free-energy time evolution

Gabriele Sicuro, Peter Rapčan and Constantino Tsallis
Physical Review E 94 (6) (2016)
https://doi.org/10.1103/PhysRevE.94.062117

On the connection between linear combination of entropies and linear combination of extremizing distributions

Gabriele Sicuro, Debarshee Bagchi and Constantino Tsallis
Physics Letters A (2016)
https://doi.org/10.1016/j.physleta.2016.03.033

Power-law Fokker–Planck equation of unimolecular reaction based on the approximation to master equation

Yanjun Zhou and Cangtao Yin
Physica A: Statistical Mechanics and its Applications 463 445 (2016)
https://doi.org/10.1016/j.physa.2016.07.060

Families of Fokker-Planck equations and the associated entropic form for a distinct steady-state probability distribution with a known external force field

Somayeh Asgarani
Physical Review E 91 (2) (2015)
https://doi.org/10.1103/PhysRevE.91.022104

Evolution of (001) and (111) facets for selective epitaxial growth inside submicron trenches

S. Jiang, C. Merckling, W. Guo, et al.
Journal of Applied Physics 115 (2) (2014)
https://doi.org/10.1063/1.4861416

Discrete and Continuum Relaxation Dynamics of Faceted Crystal Surface in Evaporation Models

Kanna Nakamura and Dionisios Margetis
Multiscale Modeling & Simulation 11 (1) 244 (2013)
https://doi.org/10.1137/110849687

Well posedness of sudden directional diffusion equations

Piotr Bogusław Mucha and Piotr Rybka
Mathematical Methods in the Applied Sciences 36 (17) 2359 (2013)
https://doi.org/10.1002/mma.2759

Fractional Fokker-Planck Equation with Space and Time Dependent Drift and Diffusion

Longjin Lv, Weiyuan Qiu and Fuyao Ren
Journal of Statistical Physics 149 (4) 619 (2012)
https://doi.org/10.1007/s10955-012-0618-3

Characterization of subdifferentials of a singular convex functional in Sobolev spaces of order minus one

Yohei Kashima
Journal of Functional Analysis 262 (6) 2833 (2012)
https://doi.org/10.1016/j.jfa.2012.01.005

Classes of N-Dimensional Nonlinear Fokker-Planck Equations Associated to Tsallis Entropy

Mauricio S. Ribeiro, Fernando D. Nobre and Evaldo M. F. Curado
Entropy 13 (11) 1928 (2011)
https://doi.org/10.3390/e13111928

From crystal steps to continuum laws: Behavior near large facets in one dimension

Dionisios Margetis and Kanna Nakamura
Physica D: Nonlinear Phenomena 240 (13) 1100 (2011)
https://doi.org/10.1016/j.physd.2011.03.007

The evolution of a crystal surface: Analysis of a one-dimensional step train connecting two facets in the ADL regime

Hala Al Hajj Shehadeh, Robert V. Kohn and Jonathan Weare
Physica D: Nonlinear Phenomena 240 (21) 1771 (2011)
https://doi.org/10.1016/j.physd.2011.07.016

Very singular diffusion equations: second and fourth order problems

Mi-Ho Giga and Yoshikazu Giga
Japan Journal of Industrial and Applied Mathematics 27 (3) 323 (2010)
https://doi.org/10.1007/s13160-010-0020-y

Numerical Analysis of a Steepest-Descent PDE Model for Surface Relaxation below the Roughening Temperature

R. V. Kohn and H. M. Versieux
SIAM Journal on Numerical Analysis 48 (5) 1781 (2010)
https://doi.org/10.1137/090750378

Thermostatistics of Overdamped Motion of Interacting Particles

J. S. Andrade, G. F. T. da Silva, A. A. Moreira, F. D. Nobre and E. M. F. Curado
Physical Review Letters 105 (26) (2010)
https://doi.org/10.1103/PhysRevLett.105.260601

Electromigration in Macroscopic Relaxation of Stepped Surfaces

John Quah and Dionisios Margetis
Multiscale Modeling & Simulation 8 (2) 667 (2010)
https://doi.org/10.1137/090760635

Kinetic Hierarchies and Macroscopic Limits for Crystalline Steps in $1+1$ Dimensions

Dionisios Margetis and Athanasios E. Tzavaras
Multiscale Modeling & Simulation 7 (3) 1428 (2009)
https://doi.org/10.1137/080726495

Dynamics of normal and anomalous diffusion in nonlinear Fokker-Planck equations

V. Schwämmle, E. M.F. Curado and F. D. Nobre
The European Physical Journal B 70 (1) 107 (2009)
https://doi.org/10.1140/epjb/e2009-00172-9

On the derivation of fractional diffusion equation with an absorbent term and a linear external force

M.A. Zahran
Applied Mathematical Modelling 33 (7) 3088 (2009)
https://doi.org/10.1016/j.apm.2008.10.013

Solutions for a fractional nonlinear diffusion equation with external force and absorbent term

E K Lenzi, M K Lenzi, L R Evangelista, L C Malacarne and R S Mendes
Journal of Statistical Mechanics: Theory and Experiment 2009 (02) P02048 (2009)
https://doi.org/10.1088/1742-5468/2009/02/P02048

Fokker-Planck equation in a wedge domain: Anomalous diffusion and survival probability

E. K. Lenzi, L. R. Evangelista, M. K. Lenzi and L. R. da Silva
Physical Review E 80 (2) (2009)
https://doi.org/10.1103/PhysRevE.80.021131

Solutions for multidimensional fractional anomalous diffusion equations

Long-Jin Lv, Jian-Bin Xiao, Fu-Yao Ren and Lei Gao
Journal of Mathematical Physics 49 (7) (2008)
https://doi.org/10.1063/1.2951898

Nonlinear mean field Fokker-Planck equations. Application to the chemotaxis of biological populations

P. H. Chavanis
The European Physical Journal B 62 (2) 179 (2008)
https://doi.org/10.1140/epjb/e2008-00142-9

Solutions of fractional nonlinear diffusion equation and first passage time: Influence of initial condition and diffusion coefficient

Jun Wang, Wen-Jun Zhang, Jin-Rong Liang, Pan Zhang and Fu-Yao Ren
Physica A: Statistical Mechanics and its Applications 387 (18) 4547 (2008)
https://doi.org/10.1016/j.physa.2008.04.017

Fractional nonlinear diffusion equation and first passage time

Jun Wang, Wen-Jun Zhang, Jin-Rong Liang, Jian-Bin Xiao and Fu-Yao Ren
Physica A: Statistical Mechanics and its Applications 387 (4) 764 (2008)
https://doi.org/10.1016/j.physa.2007.10.021

Signals of non-extensive statistical mechanics in high energy nuclear collisions

W.M. Alberico, P. Czerski, A. Lavagno, M. Nardi and V. Somá
Physica A: Statistical Mechanics and its Applications 387 (2-3) 467 (2008)
https://doi.org/10.1016/j.physa.2007.09.005

Solutions for a time-fractional diffusion equation with absorption: influence of different diffusion coefficients and external forces

Wen-Bin Chen, Jun Wang, Wei-Yuan Qiu and Fu-Yao Ren
Journal of Physics A: Mathematical and Theoretical 41 (4) 045003 (2008)
https://doi.org/10.1088/1751-8113/41/4/045003

Exact solutions for nonlinear fractional anomalous diffusion equations

Jin-Rong Liang, Fu-Yao Ren, Wei-Yuan Qiu and Jian-Bin Xiao
Physica A: Statistical Mechanics and its Applications 385 (1) 80 (2007)
https://doi.org/10.1016/j.physa.2007.06.016

Morphological evolution of edge-hillocks on single-crystal films having anisotropic drift-diffusion under the capillary and electromigration forces

Tarik Omer Ogurtani, Aytac Celik and Ersin Emre Oren
Thin Solid Films 515 (5) 2974 (2007)
https://doi.org/10.1016/j.tsf.2006.08.020

Fractional diffusion equation with an absorbent term and a linear external force: Exact solution

A. Schot, M.K. Lenzi, L.R. Evangelista, et al.
Physics Letters A 366 (4-5) 346 (2007)
https://doi.org/10.1016/j.physleta.2007.02.056

Continuum Relaxation of Interacting Steps on Crystal Surfaces in $2+1$ Dimensions

Dionisios Margetis and Robert V. Kohn
Multiscale Modeling & Simulation 5 (3) 729 (2006)
https://doi.org/10.1137/06065297X

General solution of the diffusion equation with a nonlocal diffusive term and a linear force term

L. C. Malacarne, R. S. Mendes, E. K. Lenzi and M. K. Lenzi
Physical Review E 74 (4) (2006)
https://doi.org/10.1103/PhysRevE.74.042101

Grooving of a grain boundary by evaporation–condensation below the roughening transition

H. A. Stone, M. J. Aziz and D. Margetis
Journal of Applied Physics 97 (11) (2005)
https://doi.org/10.1063/1.1922583

Nonlinear fractional diffusion equation: Exact results

E. K. Lenzi, R. S. Mendes, Kwok Sau Fa, et al.
Journal of Mathematical Physics 46 (8) (2005)
https://doi.org/10.1063/1.1993527

Continuum approach to self-similarity and scaling in morphological relaxation of a crystal with a facet

Dionisios Margetis, Michael J. Aziz and Howard A. Stone
Physical Review B 71 (16) (2005)
https://doi.org/10.1103/PhysRevB.71.165432

Transition State Theory Rate in Nonlinear Environment: the Under-damping Case

Jiang-Lin Zhao and Jing-Dong Bao
Communications in Theoretical Physics 44 (4) 752 (2005)
https://doi.org/10.1088/6102/44/4/752

A spectral method for the nonconserved surface evolution of nanocrystalline gratings below the roughening transition

A. Ramasubramaniam and V. B. Shenoy
Journal of Applied Physics 97 (11) (2005)
https://doi.org/10.1063/1.1897837

Nonlinear diffusion equation, Tsallis formalism and exact solutions

P. C. Assis, L. R. da Silva, E. K. Lenzi, L. C. Malacarne and R. S. Mendes
Journal of Mathematical Physics 46 (12) (2005)
https://doi.org/10.1063/1.2142838

Logarithmic diffusion and porous media equations: A unified description

I. T. Pedron, R. S. Mendes, T. J. Buratta, L. C. Malacarne and E. K. Lenzi
Physical Review E 72 (3) (2005)
https://doi.org/10.1103/PhysRevE.72.031106

Numerical study of the stability of (111) and (331) microfacets on Au, Pt, and Ir (110) surfaces

U. T. Ndongmouo, F. Hontinfinde and R. Ferrando
Physical Review B 72 (11) (2005)
https://doi.org/10.1103/PhysRevB.72.115412

A procedure for obtaining general nonlinear Fokker–Planck equations

Fernando D. Nobre, Evaldo M.F. Curado and G. Rowlands
Physica A: Statistical Mechanics and its Applications 334 (1-2) 109 (2004)
https://doi.org/10.1016/j.physa.2003.11.023

Stochastic feedback, nonlinear families of Markov processes, and nonlinear Fokker–Planck equations

T.D. Frank
Physica A: Statistical Mechanics and its Applications 331 (3-4) 391 (2004)
https://doi.org/10.1016/j.physa.2003.09.056

Influence of Step-Edge Barriers on the Morphological Relaxation of Nanoscale Ripples on Crystal Surfaces

V. B. Shenoy, A. Ramasubramaniam, H. Ramanarayan, et al.
Physical Review Letters 92 (25) (2004)
https://doi.org/10.1103/PhysRevLett.92.256101

Isometric graphing and multidimensional scaling for reaction-diffusion modeling on regular and fractal surfaces with spatiotemporal pattern recognition

Jainy Kuriakose, Anandamohan Ghosh, V. Ravi Kumar and B. D. Kulkarni
The Journal of Chemical Physics 120 (11) 5432 (2004)
https://doi.org/10.1063/1.1647046

Solutions for a fractional nonlinear diffusion equation: Spatial time dependent diffusion coefficient and external forces

E. K. Lenzi, R. S. Mendes, Kwok Sau Fa, L. R. da Silva and L. S. Lucena
Journal of Mathematical Physics 45 (9) 3444 (2004)
https://doi.org/10.1063/1.1768619

Derivation of nonlinear Fokker-Planck equations by means of approximations to the master equation

Evaldo Curado and Fernando Nobre
Physical Review E 67 (2) 021107 (2003)
https://doi.org/10.1103/PhysRevE.67.021107

Anomalous diffusion: Fractional Fokker–Planck equation and its solutions

E. K. Lenzi, R. S. Mendes, Kwok Sau Fa, L. C. Malacarne and L. R. da Silva
Journal of Mathematical Physics 44 (5) 2179 (2003)
https://doi.org/10.1063/1.1566452