La fonctionnalité Article cité par… liste les citations d'un article. Ces citations proviennent de la base de données des articles de EDP Sciences, ainsi que des bases de données d'autres éditeurs participant au programme CrossRef Cited-by Linking Program . Vous pouvez définir une alerte courriel pour être prévenu de la parution d'un nouvel article citant " cet article (voir sur la page du résumé de l'article le menu à droite).
Article cité :
J.C. Ciria , G. Parisi , F. Ritort , J.J. Ruiz-Lorenzo
J. Phys. I France, 3 11 (1993) 2207-2227
Citations de cet article :
23 articles
Numerical test of the replica-symmetric Hamiltonian for correlations of the critical state of spin glasses in a field
L. A. Fernandez, I. Gonzalez-Adalid Pemartin, V. Martin-Mayor, et al. Physical Review E 105 (5) (2022) https://doi.org/10.1103/PhysRevE.105.054106
Spin Glasses in a Field Show a Phase Transition Varying the Distance among Real Replicas (And How to Exploit It to Find the Critical Line in a Field)
Maddalena Dilucca, Luca Leuzzi, Giorgio Parisi, Federico Ricci-Tersenghi and Juan J. Ruiz-Lorenzo Entropy 22 (2) 250 (2020) https://doi.org/10.3390/e22020250
Boolean decision problems with competing interactions on scale-free networks: Equilibrium and nonequilibrium behavior in an external bias
Zheng Zhu, Juan Carlos Andresen, M. A. Moore and Helmut G. Katzgraber Physical Review E 89 (2) (2014) https://doi.org/10.1103/PhysRevE.89.022118
Novel Disordering Mechanism in Ferromagnetic Systems with Competing Interactions
Juan Carlos Andresen, Creighton K. Thomas, Helmut G. Katzgraber and Moshe Schechter Physical Review Letters 111 (17) (2013) https://doi.org/10.1103/PhysRevLett.111.177202
Spin glasses in a field: Three and four dimensions as seen from one space dimension
Derek Larson, Helmut G. Katzgraber, M. A. Moore and A. P. Young Physical Review B 87 (2) (2013) https://doi.org/10.1103/PhysRevB.87.024414
Ultrametric probe of the spin-glass state in a field
Helmut G. Katzgraber, Thomas Jörg, Florent Krząkała and Alexander K. Hartmann Physical Review B 86 (18) (2012) https://doi.org/10.1103/PhysRevB.86.184405
Evidence against an Almeida-Thouless line in disordered systems of Ising dipoles
Julio F. Fernández Physical Review B 82 (14) (2010) https://doi.org/10.1103/PhysRevB.82.144436
New insights from one-dimensional spin glasses
Helmut G. Katzgraber, Alexander K. Hartmann and A.P. Young Physics Procedia 6 35 (2010) https://doi.org/10.1016/j.phpro.2010.09.026
Spin glasses and algorithm benchmarks: A one-dimensional view
H G Katzgraber Journal of Physics: Conference Series 95 012004 (2008) https://doi.org/10.1088/1742-6596/95/1/012004
Probing the Almeida-Thouless line away from the mean-field model
Helmut G. Katzgraber and A. P. Young Physical Review B 72 (18) (2005) https://doi.org/10.1103/PhysRevB.72.184416
Absence of an Almeida-Thouless Line in Three-Dimensional Spin Glasses
A. P. Young and Helmut G. Katzgraber Physical Review Letters 93 (20) (2004) https://doi.org/10.1103/PhysRevLett.93.207203
Off-equilibrium fluctuation-dissipation relations in the 3d Ising spin glass in a magnetic field
A. Cruz, L. Fernández, S. Jiménez, J. Ruiz-Lorenzo and A. Tarancón Physical Review B 67 (21) 214425 (2003) https://doi.org/10.1103/PhysRevB.67.214425
Magnetic field chaos in the Sherrington-Kirkpatrick model
Alain Billoire and Barbara Coluzzi Physical Review E 67 (3) 036108 (2003) https://doi.org/10.1103/PhysRevE.67.036108
Numerical study of the Sherrington-Kirkpatrick model in a magnetic field
Alain Billoire and Barbara Coluzzi Physical Review E 68 (2) 026131 (2003) https://doi.org/10.1103/PhysRevE.68.026131
From linear to nonlinear response in spin glasses: Importance of mean-field-theory predictions
V. Zotev, G. Kenning and R. Orbach Physical Review B 66 (1) 014412 (2002) https://doi.org/10.1103/PhysRevB.66.014412
m-Vector spin glasses in the presence of uniaxial anisotropies
Selma R. Vieira, Fernando D. Nobre and Francisco A. da Costa Journal of Magnetism and Magnetic Materials 210 (1-3) 390 (2000) https://doi.org/10.1016/S0304-8853(99)00578-8
Critical behaviour of the four-dimensional spin glass in magnetic field
Enzo Marinari, Carla Naitza and Francesco Zuliani Journal of Physics A: Mathematical and General 31 (30) 6355 (1998) https://doi.org/10.1088/0305-4470/31/30/005
Four-dimensional spin glasses in a magnetic field have a mean-field-like phase
E Marinari, G Parisi and F Zuliani Journal of Physics A: Mathematical and General 31 (4) 1181 (1998) https://doi.org/10.1088/0305-4470/31/4/008
Dynamics of the four-dimensional spin glass in a magnetic field
Giorgio Parisi, Federico Ricci-Tersenghi and Juan Ruiz-Lorenzo Physical Review B 57 (21) 13617 (1998) https://doi.org/10.1103/PhysRevB.57.13617
Indentation tests for the investigation of the plasticity of glasses
G CSEH, N. Q CHINH, P TASNADI, P SZOMMER and A JUHASZ Journal of Materials Science 32 (7) 1733 (1997) https://doi.org/10.1023/A:1018524016505
m-vector spin glass in the presence of a Gaussian random field
E. Nogueira, F. D. Nobre, S. Coutinho and J. R. L. de Almeida Physical Review E 53 (6) 5742 (1996) https://doi.org/10.1103/PhysRevE.53.5742
Magnetic phase diagram, static properties, and relaxation of the insulating spin glassCoCl2⋅H2O
G. C. DeFotis, G. A. Coffey, C. C. Cinquina, et al. Physical Review B 51 (21) 15113 (1995) https://doi.org/10.1103/PhysRevB.51.15113
Static chaos and scaling behavior in the spin-glass phase
Felix Ritort Physical Review B 50 (10) 6844 (1994) https://doi.org/10.1103/PhysRevB.50.6844