La fonctionnalité Article cité par… liste les citations d'un article. Ces citations proviennent de la base de données des articles de EDP Sciences, ainsi que des bases de données d'autres éditeurs participant au programme CrossRef Cited-by Linking Program . Vous pouvez définir une alerte courriel pour être prévenu de la parution d'un nouvel article citant " cet article (voir sur la page du résumé de l'article le menu à droite).
Article cité :
Didier Sornette , Anders Johansen , Ivan Dornic
J. Phys. I France, 5 3 (1995) 325-335
Citations de cet article :
81 articles
Hair Cells in the Cochlea Must Tune Resonant Modes to the Edge of Instability without Destabilizing Collective Modes
Asheesh S. Momi, Michael C. Abbott, Julian Rubinfien, Benjamin B. Machta and Isabella R. Graf PRX Life 3 (1) (2025) https://doi.org/10.1103/PRXLife.3.013001
Asheesh S. Momi, Michael C. Abbott, Julian Rubinfien, Benjamin B. Machta and Isabella R. Graf (2024) https://doi.org/10.1101/2024.07.19.604330
Solution of the Self-Organized Critical Manna Model in Space Dimensions 2 to 4
A. V. Podlazov Journal of Experimental and Theoretical Physics 134 (3) 350 (2022) https://doi.org/10.1134/S1063776122030104
Theoretical foundations of studying criticality in the brain
Yang Tian, Zeren Tan, Hedong Hou, et al. Network Neuroscience 6 (4) 1148 (2022) https://doi.org/10.1162/netn_a_00269
Evolution of cell size control is canalized towards adders or sizers by cell cycle structure and selective pressures
Felix Proulx-Giraldeau, Jan M Skotheim and Paul François eLife 11 (2022) https://doi.org/10.7554/eLife.79919
Félix Proulx-Giraldeau, Jan M. Skotheim and Paul Francois (2022) https://doi.org/10.1101/2022.04.12.488093
Emerging social brain: A collective self-motivated Boltzmann machine
Yong Tao, Didier Sornette and Li Lin Chaos, Solitons & Fractals 143 110543 (2021) https://doi.org/10.1016/j.chaos.2020.110543
Synthetic criticality in cellular brains
Ricard Solé, Nuria Conde-Pueyo, Antoni Guillamon, et al. Journal of Physics: Complexity 2 (4) 041001 (2021) https://doi.org/10.1088/2632-072X/ac35b3
Regimes of collective logic
Ilya A. Surov, Vlada V. Ignateva and Andrey Y. Bazhenov Kybernetes 50 (8) 2428 (2021) https://doi.org/10.1108/K-04-2020-0231
DRW Burrows, G Diana, B Pimpel, F Moeller, MP Richardson, DS Bassett, MP Meyer and RE Rosch (2021) https://doi.org/10.1101/2021.10.14.464473
Feedback Mechanisms for Self-Organization to the Edge of a Phase Transition
Victor Buendía, Serena di Santo, Juan A. Bonachela and Miguel A. Muñoz Frontiers in Physics 8 (2020) https://doi.org/10.3389/fphy.2020.00333
Self-Organized Criticality in the Autowave Model of Speciation
A. Y. Garaeva, A. E. Sidorova, N. T. Levashova and V. A. Tverdislov Moscow University Physics Bulletin 75 (5) 398 (2020) https://doi.org/10.3103/S0027134920050124
Dynamical Criticality: Overview and Open Questions
Andrea Roli, Marco Villani, Alessandro Filisetti and Roberto Serra Journal of Systems Science and Complexity 31 (3) 647 (2018) https://doi.org/10.1007/s11424-017-6117-5
Percolation mechanism drives actin gels to the critically connected state
Chiu Fan Lee and Gunnar Pruessner Physical Review E 93 (5) (2016) https://doi.org/10.1103/PhysRevE.93.052414
25 Years of Self-organized Criticality: Concepts and Controversies
Nicholas W. Watkins, Gunnar Pruessner, Sandra C. Chapman, Norma B. Crosby and Henrik J. Jensen Space Science Reviews 198 (1-4) 3 (2016) https://doi.org/10.1007/s11214-015-0155-x
Attaining and maintaining criticality in a neuronal network model
Jiayi Peng and John M. Beggs Physica A: Statistical Mechanics and its Applications 392 (7) 1611 (2013) https://doi.org/10.1016/j.physa.2012.11.013
Self-organizing circuitry and emergent computation in mouse embryonic stem cells
J.D. Halley, K. Smith-Miles, D.A. Winkler, et al. Stem Cell Research 8 (2) 324 (2012) https://doi.org/10.1016/j.scr.2011.11.001
Universal scaling functions of a dissipative Manna model
Chien-Fu Chen, An-Chung Cheng, Yi-Duen Wang and Chai-Yu Lin Computer Physics Communications 182 (1) 226 (2011) https://doi.org/10.1016/j.cpc.2010.07.033
Greg Paperin and Suzanne Sadedin 343 151 (2011) https://doi.org/10.1007/978-3-642-20206-3_10
Dual-phase evolution in complex adaptive systems
Greg Paperin, David G. Green and Suzanne Sadedin Journal of The Royal Society Interface 8 (58) 609 (2011) https://doi.org/10.1098/rsif.2010.0719
Renormalization-group approach to the Manna sandpile
Chai-Yu Lin Physical Review E 81 (2) (2010) https://doi.org/10.1103/PhysRevE.81.021112
SCALINGS OF A MODIFIED MANNA MODEL WITH BULK DISSIPATION
CHIEN-FU CHEN and CHAI-YU LIN International Journal of Modern Physics C 20 (02) 273 (2009) https://doi.org/10.1142/S0129183109013601
Self-organization without conservation: true or just apparent scale-invariance?
Juan A Bonachela and Miguel A Muñoz Journal of Statistical Mechanics: Theory and Experiment 2009 (09) P09009 (2009) https://doi.org/10.1088/1742-5468/2009/09/P09009
Renormalization group and instantons in stochastic nonlinear dynamics
D. Volchenkov The European Physical Journal Special Topics 170 (1) 1 (2009) https://doi.org/10.1140/epjst/e2009-01001-3
Stem cell decision making and critical-like exploratory networks
Julianne D. Halley, Frank R. Burden and David A. Winkler Stem Cell Research 2 (3) 165 (2009) https://doi.org/10.1016/j.scr.2009.03.001
Spontaneous-search method and short-time dynamics: applications to the Domany-Kinzel cellular automaton
S. D. da Cunha, U. L. Fulco, L. R. da Silva and F. D. Nobre The European Physical Journal B 63 (1) 93 (2008) https://doi.org/10.1140/epjb/e2008-00212-0
Critical-like self-organization and natural selection: Two facets of a single evolutionary process?
Julianne D. Halley and David A. Winkler Biosystems 92 (2) 148 (2008) https://doi.org/10.1016/j.biosystems.2008.01.005
The Ising model in a Bak–Tang–Wiesenfeld sandpile
Zbigniew Koza and Marcel Ausloos Physica A: Statistical Mechanics and its Applications 375 (1) 199 (2007) https://doi.org/10.1016/j.physa.2006.08.074
Progress in Artificial Life
Greg Paperin, David Green, Suzanne Sadedin and Tania Leishman Lecture Notes in Computer Science, Progress in Artificial Life 4828 131 (2007) https://doi.org/10.1007/978-3-540-76931-6_12
The critical properties of the agent-based model with environmental–economic interactions
Zoltán Kuscsik, Denis Horváth and Martin Gmitra Physica A: Statistical Mechanics and its Applications 379 (1) 199 (2007) https://doi.org/10.1016/j.physa.2007.01.003
The rock fracture experiment with a drive control: A spatial aspect
V. Kuksenko, N. Tomilin and A. Chmel Tectonophysics 431 (1-4) 123 (2007) https://doi.org/10.1016/j.tecto.2006.05.033
Extreme Events in Nature and Society
Didier Sornette The Frontiers Collection, Extreme Events in Nature and Society 95 (2006) https://doi.org/10.1007/3-540-28611-X_5
A self-adjusted Monte Carlo simulation as a model for financial markets with central regulation
Denis Horváth, Martin Gmitra and Zoltán Kuscsik Physica A: Statistical Mechanics and its Applications 361 (2) 589 (2006) https://doi.org/10.1016/j.physa.2005.06.067
Abrupt transition in a sandpile model
Y. F. Contoyiannis and F. K. Diakonos Physical Review E 73 (3) (2006) https://doi.org/10.1103/PhysRevE.73.031303
Absorbing-state phase transitions with extremal dynamics
Ronald Dickman and Guilherme J. M. Garcia Physical Review E 71 (6) (2005) https://doi.org/10.1103/PhysRevE.71.066113
Critical phase in nonconserving zero-range processes and rewiring networks
A. G. Angel, M. R. Evans, E. Levine and D. Mukamel Physical Review E 72 (4) (2005) https://doi.org/10.1103/PhysRevE.72.046132
Asymptotic Behavior of the Order Parameter in a Stochastic Sandpile
Ronaldo Vidigal and Ronald Dickman Journal of Statistical Physics 118 (1-2) 1 (2005) https://doi.org/10.1007/s10955-004-8775-7
Granular matter: A wonderful world of clusters in far-from-equilibrium systems
M. Ausloos, R. Lambiotte, K. Trojan, Z. Koza and M. Pe¸kala Physica A: Statistical Mechanics and its Applications 357 (2) 337 (2005) https://doi.org/10.1016/j.physa.2005.06.034
The role of driving rate in scaling characteristics of rock fracture
V Kuksenko, N Tomilin and A Chmel Journal of Statistical Mechanics: Theory and Experiment 2005 (06) P06012 (2005) https://doi.org/10.1088/1742-5468/2005/06/P06012
THE SELF-ORGANIZED MULTI-LATTICE MONTE CARLO SIMULATION
DENIS HORVÁTH and MARTIN GMITRA International Journal of Modern Physics C 15 (09) 1249 (2004) https://doi.org/10.1142/S0129183104006674
Rapid self-organized criticality: Fractal evolution in extreme environments
Julianne D. Halley, Andrew C. Warden, Suzanne Sadedin and Wentian Li Physical Review E 70 (3) (2004) https://doi.org/10.1103/PhysRevE.70.036118
A self-organized system of smart preys and predators
Alejandro F. Rozenfeld and Ezequiel V. Albano Physics Letters A 332 (5-6) 361 (2004) https://doi.org/10.1016/j.physleta.2004.09.015
Self-organized criticality in a bead pile
Rachel Costello, K. Cruz, Christie Egnatuk, et al. Physical Review E 67 (4) 041304 (2003) https://doi.org/10.1103/PhysRevE.67.041304
Broad scaling region in a spatial ecological system
Manojit Roy, Mercedes Pascual and Alain Franc Complexity 8 (5) 19 (2003) https://doi.org/10.1002/cplx.10096
Path-integral representation for a stochastic sandpile
Ronald Dickman and Ronaldo Vidigal Journal of Physics A: Mathematical and General 35 (34) 7269 (2002) https://doi.org/10.1088/0305-4470/35/34/303
Finite-size effects of avalanche dynamics
Christian Eurich, J. Herrmann and Udo Ernst Physical Review E 66 (6) 066137 (2002) https://doi.org/10.1103/PhysRevE.66.066137
Anomalous scaling and Lee-Yang zeros in self-organized criticality
B. Cessac and J. Meunier Physical Review E 65 (3) 036131 (2002) https://doi.org/10.1103/PhysRevE.65.036131
Local rigidity in sandpile models
S. Ciliberti, G. Caldarelli, V. Loreto and L. Pietronero Physical Review E 66 (1) 016133 (2002) https://doi.org/10.1103/PhysRevE.66.016133
Critical and near-critical branching processes
Christoph Adami and Johan Chu Physical Review E 66 (1) 011907 (2002) https://doi.org/10.1103/PhysRevE.66.011907
Quiet Sun coronal heating: A statistical model
V. Krasnoselskikh, O. Podladchikova, B. Lefebvre and N. Vilmer Astronomy & Astrophysics 382 (2) 699 (2002) https://doi.org/10.1051/0004-6361:20011677
Topological geometrodynamics, Part I: General theory
M. Pitkänen Chaos, Solitons & Fractals 13 (6) 1205 (2002) https://doi.org/10.1016/S0960-0779(01)00139-4
Lyapunov exponents and transport in the Zhang model of self-organized criticality
B. Cessac, Ph. Blanchard and T. Krüger Physical Review E 64 (1) (2001) https://doi.org/10.1103/PhysRevE.64.016133
Investigation of critical properties in the two-dimensional site-diluted Ising ferromagnet
U.L. Fulco, F.D. Nobre, L.R. da Silva and L.S. Lucena Physica A: Statistical Mechanics and its Applications 297 (1-2) 131 (2001) https://doi.org/10.1016/S0378-4371(01)00166-2
Self-organized critical random Boolean networks
Bartolo Luque, Fernando Ballesteros and Enrique Muro Physical Review E 63 (5) 051913 (2001) https://doi.org/10.1103/PhysRevE.63.051913
Generic criticality in a model of evolution
Adam Lipowski Physical Review E 62 (3) 3356 (2000) https://doi.org/10.1103/PhysRevE.62.3356
Efficient search method for obtaining critical properties
U.L. Fulco, F.D. Nobre, L.R. da Silva, L.S. Lucena and G.M. Viswanathan Physica A: Statistical Mechanics and its Applications 284 (1-4) 223 (2000) https://doi.org/10.1016/S0378-4371(00)00217-X
Absorbing-state phase transitions in fixed-energy sandpiles
Alessandro Vespignani, Ronald Dickman, Miguel Muñoz and Stefano Zapperi Physical Review E 62 (4) 4564 (2000) https://doi.org/10.1103/PhysRevE.62.4564
Self-organized criticality
Donald L Turcotte Reports on Progress in Physics 62 (10) 1377 (1999) https://doi.org/10.1088/0034-4885/62/10/201
Evolution of avalanche conducting states in electrorheological liquids
A. Bezryadin, R. Westervelt and M. Tinkham Physical Review E 59 (6) 6896 (1999) https://doi.org/10.1103/PhysRevE.59.6896
Synchronous versus asynchronous updating in the “game of Life”
Hendrik Blok and Birger Bergersen Physical Review E 59 (4) 3876 (1999) https://doi.org/10.1103/PhysRevE.59.3876
SOC in a population model with global control
Hans-Martin Bröker and Peter Grassberger Physica A: Statistical Mechanics and its Applications 267 (3-4) 453 (1999) https://doi.org/10.1016/S0378-4371(99)00042-4
Universality and self-similarity of an energy-constrained sandpile model with random neighbors
Shu-dong Zhang Physical Review E 60 (1) 259 (1999) https://doi.org/10.1103/PhysRevE.60.259
Novel position-space renormalization group for bond directed percolation in two dimensions
Hüseyin Kaya and Ayşe Erzan Physica A: Statistical Mechanics and its Applications 265 (1-2) 53 (1999) https://doi.org/10.1016/S0378-4371(98)00558-5
Self-organized criticality as an absorbing-state phase transition
Ronald Dickman, Alessandro Vespignani and Stefano Zapperi Physical Review E 57 (5) 5095 (1998) https://doi.org/10.1103/PhysRevE.57.5095
Self-organized critical random directed polymers
Per Jögi and Didier Sornette Physical Review E 57 (6) 6936 (1998) https://doi.org/10.1103/PhysRevE.57.6936
Mean-field behavior of the sandpile model below the upper critical dimension
Alessandro Chessa, Enzo Marinari, Alessandro Vespignani and Stefano Zapperi Physical Review E 57 (6) R6241 (1998) https://doi.org/10.1103/PhysRevE.57.R6241
How self-organized criticality works: A unified mean-field picture
Alessandro Vespignani and Stefano Zapperi Physical Review E 57 (6) 6345 (1998) https://doi.org/10.1103/PhysRevE.57.6345
Driving, Conservation, and Absorbing States in Sandpiles
Alessandro Vespignani, Ronald Dickman, Miguel A. Muñoz and Stefano Zapperi Physical Review Letters 81 (25) 5676 (1998) https://doi.org/10.1103/PhysRevLett.81.5676
Energy Constrained Sandpile Models
Alessandro Chessa, Enzo Marinari and Alessandro Vespignani Physical Review Letters 80 (19) 4217 (1998) https://doi.org/10.1103/PhysRevLett.80.4217
Self-organized criticality in an isotropically driven model approaching equilibrium
Kwan-tai Leung, Jørgen Vitting Andersen and Didier Sornette Physica A: Statistical Mechanics and its Applications 254 (1-2) 85 (1998) https://doi.org/10.1016/S0378-4371(98)00018-1
Self-Organized Criticality in Stick-Slip Models with Periodic Boundaries
Kwan-tai Leung, Jørgen Vitting Andersen and Didier Sornette Physical Review Letters 80 (9) 1916 (1998) https://doi.org/10.1103/PhysRevLett.80.1916
Order Parameter and Scaling Fields in Self-Organized Criticality
Alessandro Vespignani and Stefano Zapperi Physical Review Letters 78 (25) 4793 (1997) https://doi.org/10.1103/PhysRevLett.78.4793
Dynamically changing interface as a model of measurement in complex systems
Yukio-Pegio Gunji and Shin'ichi Toyoda Physica D: Nonlinear Phenomena 101 (1-2) 27 (1997) https://doi.org/10.1016/S0167-2789(96)00220-5
Scaling properties of a model for ruptures in an elastic medium
Daniel Groleau, Birger Bergersen and Huang-Jian Xu Journal of Physics A: Mathematical and General 30 (10) 3407 (1997) https://doi.org/10.1088/0305-4470/30/10/018
Algorithmic mapping from criticality to self-organized criticality
F. Bagnoli, P. Palmerini and R. Rechtman Physical Review E 55 (4) 3970 (1997) https://doi.org/10.1103/PhysRevE.55.3970
Anomalous scaling in the Bak-Chen-Tang forest fire model
Hans-Martin Bröker and Peter Grassberger Physical Review E 56 (5) R4918 (1997) https://doi.org/10.1103/PhysRevE.56.R4918
Phase transitions in a forest-fire model
S. Clar, K. Schenk and F. Schwabl Physical Review E 55 (3) 2174 (1997) https://doi.org/10.1103/PhysRevE.55.2174
Are Giant Pulses Evidence of Self-Organized Criticality?
Matthew D. T. Young and Brian G. Kenny International Astronomical Union Colloquium 160 179 (1996) https://doi.org/10.1017/S0252921100041397
The screening of species in a Darwinistic tree-like model of evolution
N. Vandewalle and M. Ausloos Physica D: Nonlinear Phenomena 90 (3) 262 (1996) https://doi.org/10.1016/0167-2789(95)00242-1
Parallel Bak-Sneppen model and directed percolation
Didier Sornette and Ivan Dornic Physical Review E 54 (4) 3334 (1996) https://doi.org/10.1103/PhysRevE.54.3334
Lack of universality in two-dimensional multicomponent spreading phenomena
N. Vandewalle and M. Ausloos Physical Review E 52 (4) 3447 (1995) https://doi.org/10.1103/PhysRevE.52.3447