Article cité par

La fonctionnalité Article cité par… liste les citations d'un article. Ces citations proviennent de la base de données des articles de EDP Sciences, ainsi que des bases de données d'autres éditeurs participant au programme CrossRef Cited-by Linking Program. Vous pouvez définir une alerte courriel pour être prévenu de la parution d'un nouvel article citant " cet article (voir sur la page du résumé de l'article le menu à droite).

Article cité :

Removal of kinetic traps and enhanced protein folding by strategic substitution of amino acids in a model α‐helical hairpin peptide

Prem P. Chapagain and Bernard S. Gerstman
Biopolymers 81 (3) 167 (2006)
https://doi.org/10.1002/bip.20388

Self-organization in protein folding and the hydrophobic interaction

Bernard S. Gerstman and Prem P. Chapagain
The Journal of Chemical Physics 123 (5) (2005)
https://doi.org/10.1063/1.1990110

Effect of Multiple Prolyl Isomerization Reactions on the Stability and Folding Kinetics of the Notch Ankyrin Domain: Experiment and Theory

Christina Marchetti Bradley and Doug Barrick
Journal of Molecular Biology 352 (2) 253 (2005)
https://doi.org/10.1016/j.jmb.2005.06.041

Temperature dependence and counter effect of the correlations of folding rate with chain length and with native topology

Hironori K. Nakamura and Mitsunori Takano
Physical Review E 71 (6) 061913 (2005)
https://doi.org/10.1103/PhysRevE.71.061913

Unification of the Folding Mechanisms of Non-two-state and Two-state Proteins

Kiyoto Kamagata, Munehito Arai and Kunihiro Kuwajima
Journal of Molecular Biology 339 (4) 951 (2004)
https://doi.org/10.1016/j.jmb.2004.04.015

Buffed energy landscapes: Another solution to the kinetic paradoxes of protein folding

Steven S. Plotkin and Peter G. Wolynes
Proceedings of the National Academy of Sciences 100 (8) 4417 (2003)
https://doi.org/10.1073/pnas.0330720100

Finite size scaling of structural transitions in a simulated protein with secondary and tertiary structure

Prem P. Chapagain and Bernard S. Gerstman
The Journal of Chemical Physics 119 (2) 1174 (2003)
https://doi.org/10.1063/1.1579673

Fast Chain Contraction during Protein Folding: “Foldability” and Collapse Dynamics

Linlin Qiu, Cherian Zachariah and Stephen J. Hagen
Physical Review Letters 90 (16) 168103 (2003)
https://doi.org/10.1103/PhysRevLett.90.168103

A simple lattice model that exhibits a protein‐like cooperative all‐or‐none folding transition

Andrzej Kolinski, Dominik Gront, Piotr Pokarowski and Jeffrey Skolnick
Biopolymers 69 (3) 399 (2003)
https://doi.org/10.1002/bip.10385

The topomer search model: A simple, quantitative theory of two‐state protein folding kinetics

Dmitrii E. Makarov and Kevin W. Plaxco
Protein Science 12 (1) 17 (2003)
https://doi.org/10.1110/ps.0220003

Effect of secondary structure on protein aggregation: A replica exchange simulation study

D. Bratko and H. W. Blanch
The Journal of Chemical Physics 118 (11) 5185 (2003)
https://doi.org/10.1063/1.1546429

Free Volume Concept in Application to Folding Kinetics of Random Heteropolymers

Yaroslav E. Ryabov
The Journal of Physical Chemistry B 107 (43) 12009 (2003)
https://doi.org/10.1021/jp035216c

How fast is protein hydrophobic collapse?

Mourad Sadqi, Lisa J. Lapidus and Victor Muñoz
Proceedings of the National Academy of Sciences 100 (21) 12117 (2003)
https://doi.org/10.1073/pnas.2033863100

Chain length is the main determinant of the folding rate for proteins with three-state folding kinetics

Oxana V. Galzitskaya, Sergiy O. Garbuzynskiy, Dmitry N. Ivankov and Alexei V. Finkelstein
Proteins: Structure, Function, and Genetics 51 (2) 162 (2003)
https://doi.org/10.1002/prot.10343

Dependence of Folding Rates on Protein Length

Mai Suan Li, D. K. Klimov and D. Thirumalai
The Journal of Physical Chemistry B 106 (33) 8302 (2002)
https://doi.org/10.1021/jp025837q

Conformational landscape of cytochrome c folding studied by microsecond-resolved small-angle x-ray scattering

Shuji Akiyama, Satoshi Takahashi, Tetsunari Kimura, Koichiro Ishimori, Isao Morishima, Yukihiro Nishikawa and Tetsuro Fujisawa
Proceedings of the National Academy of Sciences 99 (3) 1329 (2002)
https://doi.org/10.1073/pnas.012458999

Kinetic nonoptimality and vibrational stability of proteins

Marek Cieplak and Trinh Xuan Hoang
Proteins: Structure, Function, and Bioinformatics 44 (1) 20 (2001)
https://doi.org/10.1002/prot.1067

Population analyses of kinetic partitioning in protein folding

Hironori K. Nakamura and Masaki Sasai
Proteins: Structure, Function, and Bioinformatics 43 (3) 280 (2001)
https://doi.org/10.1002/prot.1039

Competition between protein folding and aggregation: A three-dimensional lattice-model simulation

D. Bratko and H. W. Blanch
The Journal of Chemical Physics 114 (1) 561 (2001)
https://doi.org/10.1063/1.1330212

Role of counterion condensation in folding of the Tetrahymena ribozyme II. Counterion-dependence of folding kinetics

Susan L. Heilman-Miller, Jie Pan, D. Thirumalai and Sarah A. Woodson
Journal of Molecular Biology 309 (1) 57 (2001)
https://doi.org/10.1006/jmbi.2001.4660

Roles of native topology and chain-length scaling in protein folding: A simulation study with a Gō-like model

Nobuyasu Koga and Shoji Takada
Journal of Molecular Biology 313 (1) 171 (2001)
https://doi.org/10.1006/jmbi.2001.5037

Native topology determines force-induced unfolding pathways in globular proteins

D. K. Klimov and D. Thirumalai
Proceedings of the National Academy of Sciences 97 (13) 7254 (2000)
https://doi.org/10.1073/pnas.97.13.7254

Spin analogues of proteins: scaling of `folding' properties

Trinh Xuan Hoang, Nazar Sushko, Mai Suan Li and Marek Cieplak
Journal of Physics A: Mathematical and General 33 (22) 3977 (2000)
https://doi.org/10.1088/0305-4470/33/22/302

Molecular dynamics of folding of secondary structures in Go-type models of proteins

Trinh Xuan Hoang and Marek Cieplak
The Journal of Chemical Physics 112 (15) 6851 (2000)
https://doi.org/10.1063/1.481261

Fast folding of a ribozyme by stabilizing core interactions: evidence for multiple folding pathways in RNA 1 1Edited by I. Tinoco

Jie Pan, Michael L. Deras and Sarah A. Woodson
Journal of Molecular Biology 296 (1) 133 (2000)
https://doi.org/10.1006/jmbi.1999.3439

Simulation of heteropolymer collapse with an explicit solvent in two dimensions

James M. Polson and Martin J. Zuckermann
The Journal of Chemical Physics 113 (3) 1283 (2000)
https://doi.org/10.1063/1.481906

Fast folding of Escherichia coli cyclophilin A: a hypothesis of a unique hydrophobic core with a phenylalanine cluster

Teikichi Ikura, Toshiya Hayano, Nobuhiro Takahashi and Kunihiro Kuwajima
Journal of Molecular Biology 297 (3) 791 (2000)
https://doi.org/10.1006/jmbi.2000.3580

Magnesium-dependent folding of self-splicing RNA: Exploring the link between cooperativity, thermodynamics, and kinetics

Jie Pan, D. Thirumalai and Sarah A. Woodson
Proceedings of the National Academy of Sciences 96 (11) 6149 (1999)
https://doi.org/10.1073/pnas.96.11.6149

Statistical Mechanics of Biocomplexity

Wolfgang Wenzel and Kay Hamacher
Lecture Notes in Physics, Statistical Mechanics of Biocomplexity 527 62 (1999)
https://doi.org/10.1007/BFb0105008

Submillisecond folding of the peripheral subunit-binding domain 1 1Edited by P. E. Wright

Shari Spector and Daniel P Raleigh
Journal of Molecular Biology 293 (4) 763 (1999)
https://doi.org/10.1006/jmbi.1999.3189

Compactness of the denatured state of a fast-folding protein measured by submillisecond small-angle x-ray scattering

Lois Pollack, Mark W. Tate, Nicholas C. Darnton, James B. Knight, Sol M. Gruner, William A. Eaton and Robert H. Austin
Proceedings of the National Academy of Sciences 96 (18) 10115 (1999)
https://doi.org/10.1073/pnas.96.18.10115

Temperature dependence of the folding rate in a simple protein model: Search for a “glass” transition

A. Gutin, A. Sali, V. Abkevich, M. Karplus and E. I. Shakhnovich
The Journal of Chemical Physics 108 (15) 6466 (1998)
https://doi.org/10.1063/1.476053

On the transition coordinate for protein folding

Rose Du, Vijay S. Pande, Alexander Yu. Grosberg, Toyoichi Tanaka and Eugene S. Shakhnovich
The Journal of Chemical Physics 108 (1) 334 (1998)
https://doi.org/10.1063/1.475393

Self-consistently optimized energy functions for protein structure prediction by molecular dynamics

Kristin K. Koretke, Zaida Luthey-Schulten and Peter G. Wolynes
Proceedings of the National Academy of Sciences 95 (6) 2932 (1998)
https://doi.org/10.1073/pnas.95.6.2932

Rate of protein folding near the point of thermodynamic equilibrium between the coil and the most stable chain fold: Influence of chain knotting on the rate of folding

Alexei V Finkelstein and Azat Ya Badretdinov
Folding and Design 3 (1) 67 (1998)
https://doi.org/10.1016/S1359-0278(98)00009-1

Native secondary structure formation in RNA may be a slave to tertiary folding

D. Thirumalai
Proceedings of the National Academy of Sciences 95 (20) 11506 (1998)
https://doi.org/10.1073/pnas.95.20.11506

Contact order, transition state placement and the refolding rates of single domain proteins 1 1Edited by P. E. Wright

Kevin W Plaxco, Kim T Simons and David Baker
Journal of Molecular Biology 277 (4) 985 (1998)
https://doi.org/10.1006/jmbi.1998.1645

Linking rates of folding in lattice models of proteins with underlying thermodynamic characteristics

D. K. Klimov and D. Thirumalai
The Journal of Chemical Physics 109 (10) 4119 (1998)
https://doi.org/10.1063/1.477012

Statistical mechanics of a correlated energy landscape model for protein folding funnels

Steven S. Plotkin, Jin Wang and Peter G. Wolynes
The Journal of Chemical Physics 106 (7) 2932 (1997)
https://doi.org/10.1063/1.473355

A coarse-grained, “realistic” model for protein folding

Pierpaolo Bruscolini
The Journal of Chemical Physics 107 (18) 7512 (1997)
https://doi.org/10.1063/1.474991

Protein folding kinetics: timescales, pathways and energy landscapes in terms of sequence-dependent properties

Thomas Veitshans, Dmitri Klimov and Devarajan Thirumalai
Folding and Design 2 (1) 1 (1997)
https://doi.org/10.1016/S1359-0278(97)00002-3

Statics, metastable states, and barriers in protein folding: A replica variational approach

Shoji Takada and Peter G. Wolynes
Physical Review E 55 (4) 4562 (1997)
https://doi.org/10.1103/PhysRevE.55.4562

Microscopic theory of critical folding nuclei and reconfiguration activation barriers in folding proteins

Shoji Takada and Peter G. Wolynes
The Journal of Chemical Physics 107 (22) 9585 (1997)
https://doi.org/10.1063/1.475256

Compaction and folding in model proteins

Ting-Lan Chiu and Richard A. Goldstein
The Journal of Chemical Physics 107 (11) 4408 (1997)
https://doi.org/10.1063/1.474782

On potential energy surfaces and relaxation to the global minimum

Jonathan P. K. Doye and David J. Wales
The Journal of Chemical Physics 105 (18) 8428 (1996)
https://doi.org/10.1063/1.472697

Dynamics of Random Hydrophobic-Hydrophilic Copolymers with Implications for Protein Folding

D. Thirumalai, V. Ashwin and J. K. Bhattacharjee
Physical Review Letters 77 (27) 5385 (1996)
https://doi.org/10.1103/PhysRevLett.77.5385

Kinetics of a Gaussian random copolymer as a prototype for protein folding

E. G. Timoshenko, Yu. A. Kuznetsov and K. A. Dawson
Physical Review E 54 (4) 4071 (1996)
https://doi.org/10.1103/PhysRevE.54.4071