La fonctionnalité Article cité par… liste les citations d'un article. Ces citations proviennent de la base de données des articles de EDP Sciences, ainsi que des bases de données d'autres éditeurs participant au programme CrossRef Cited-by Linking Program . Vous pouvez définir une alerte courriel pour être prévenu de la parution d'un nouvel article citant " cet article (voir sur la page du résumé de l'article le menu à droite).
Article cité :
D. Thirumalai
J. Phys. I France, 5 11 (1995) 1457-1467
Citations de cet article :
189 articles | Pages :
Removal of kinetic traps and enhanced protein folding by strategic substitution of amino acids in a model α‐helical hairpin peptide
Prem P. Chapagain and Bernard S. Gerstman Biopolymers 81 (3) 167 (2006) https://doi.org/10.1002/bip.20388
Folding of small proteins: a matter of geometry?
P. F. N. Faísca * and M. M. Telo da Gama Molecular Physics 103 (21-23) 2903 (2005) https://doi.org/10.1080/00268970500221891
Self-organization in protein folding and the hydrophobic interaction
Bernard S. Gerstman and Prem P. Chapagain The Journal of Chemical Physics 123 (5) (2005) https://doi.org/10.1063/1.1990110
Mechanical unfolding of RNA hairpins
Changbong Hyeon and D. Thirumalai Proceedings of the National Academy of Sciences 102 (19) 6789 (2005) https://doi.org/10.1073/pnas.0408314102
Effect of Multiple Prolyl Isomerization Reactions on the Stability and Folding Kinetics of the Notch Ankyrin Domain: Experiment and Theory
Christina Marchetti Bradley and Doug Barrick Journal of Molecular Biology 352 (2) 253 (2005) https://doi.org/10.1016/j.jmb.2005.06.041
Temperature dependence and counter effect of the correlations of folding rate with chain length and with native topology
Hironori K. Nakamura and Mitsunori Takano Physical Review E 71 (6) 061913 (2005) https://doi.org/10.1103/PhysRevE.71.061913
Folding λ-Repressor at Its Speed Limit
Wei Yuan Yang and Martin Gruebele Biophysical Journal 87 (1) 596 (2004) https://doi.org/10.1529/biophysj.103.039040
The protein folding ‘speed limit’
Jan Kubelka, James Hofrichter and William A Eaton Current Opinion in Structural Biology 14 (1) 76 (2004) https://doi.org/10.1016/j.sbi.2004.01.013
Cooperativity and contact order in protein folding
Marek Cieplak Physical Review E 69 (3) 031907 (2004) https://doi.org/10.1103/PhysRevE.69.031907
Finite Size Effects on Thermal Denaturation of Globular Proteins
Mai Suan Li, Dmitri K. Klimov and D. Thirumalai Physical Review Letters 93 (26) 268107 (2004) https://doi.org/10.1103/PhysRevLett.93.268107
Thermal denaturation and folding rates of single domain proteins: size matters
Mai Suan Li, D.K Klimov and D Thirumalai Polymer 45 (2) 573 (2004) https://doi.org/10.1016/j.polymer.2003.10.066
Unification of the Folding Mechanisms of Non-two-state and Two-state Proteins
Kiyoto Kamagata, Munehito Arai and Kunihiro Kuwajima Journal of Molecular Biology 339 (4) 951 (2004) https://doi.org/10.1016/j.jmb.2004.04.015
Blake Gillespie and Kevin W. Plaxco 160 93 (2004) https://doi.org/10.1007/1-4020-2340-5_5
Buffed energy landscapes: Another solution to the kinetic paradoxes of protein folding
Steven S. Plotkin and Peter G. Wolynes Proceedings of the National Academy of Sciences 100 (8) 4417 (2003) https://doi.org/10.1073/pnas.0330720100
Folding of proteins in Go models with angular interactions
Marek Cieplak and Trinh Xuan Hoang Physica A: Statistical Mechanics and its Applications 330 (1-2) 195 (2003) https://doi.org/10.1016/j.physa.2003.08.034
Finite size scaling of structural transitions in a simulated protein with secondary and tertiary structure
Prem P. Chapagain and Bernard S. Gerstman The Journal of Chemical Physics 119 (2) 1174 (2003) https://doi.org/10.1063/1.1579673
Fast Chain Contraction during Protein Folding: “Foldability” and Collapse Dynamics
Linlin Qiu, Cherian Zachariah and Stephen J. Hagen Physical Review Letters 90 (16) 168103 (2003) https://doi.org/10.1103/PhysRevLett.90.168103
Coil‐Globule Collapse in Flexible Macromolecules
Bahattin M. Baysal and Frank E. Karasz Macromolecular Theory and Simulations 12 (9) 627 (2003) https://doi.org/10.1002/mats.200350028
Universality Classes in Folding Times of Proteins
Marek Cieplak and Trinh Xuan Hoang Biophysical Journal 84 (1) 475 (2003) https://doi.org/10.1016/S0006-3495(03)74867-X
A simple lattice model that exhibits a protein‐like cooperative all‐or‐none folding transition
Andrzej Kolinski, Dominik Gront, Piotr Pokarowski and Jeffrey Skolnick Biopolymers 69 (3) 399 (2003) https://doi.org/10.1002/bip.10385
Experimental Tests of Villin Subdomain Folding Simulations
Jan Kubelka, William A. Eaton and James Hofrichter Journal of Molecular Biology 329 (4) 625 (2003) https://doi.org/10.1016/S0022-2836(03)00519-9
The topomer search model: A simple, quantitative theory of two‐state protein folding kinetics
Dmitrii E. Makarov and Kevin W. Plaxco Protein Science 12 (1) 17 (2003) https://doi.org/10.1110/ps.0220003
Effect of secondary structure on protein aggregation: A replica exchange simulation study
D. Bratko and H. W. Blanch The Journal of Chemical Physics 118 (11) 5185 (2003) https://doi.org/10.1063/1.1546429
Free Volume Concept in Application to Folding Kinetics of Random Heteropolymers
Yaroslav E. Ryabov The Journal of Physical Chemistry B 107 (43) 12009 (2003) https://doi.org/10.1021/jp035216c
How fast is protein hydrophobic collapse?
Mourad Sadqi, Lisa J. Lapidus and Victor Muñoz Proceedings of the National Academy of Sciences 100 (21) 12117 (2003) https://doi.org/10.1073/pnas.2033863100
Chain length is the main determinant of the folding rate for proteins with three-state folding kinetics
Oxana V. Galzitskaya, Sergiy O. Garbuzynskiy, Dmitry N. Ivankov and Alexei V. Finkelstein Proteins: Structure, Function, and Genetics 51 (2) 162 (2003) https://doi.org/10.1002/prot.10343
Dependence of Folding Rates on Protein Length
Mai Suan Li, D. K. Klimov and D. Thirumalai The Journal of Physical Chemistry B 106 (33) 8302 (2002) https://doi.org/10.1021/jp025837q
Conformational landscape of cytochrome
c
folding studied by microsecond-resolved small-angle x-ray scattering
Shuji Akiyama, Satoshi Takahashi, Tetsunari Kimura, Koichiro Ishimori, Isao Morishima, Yukihiro Nishikawa and Tetsuro Fujisawa Proceedings of the National Academy of Sciences 99 (3) 1329 (2002) https://doi.org/10.1073/pnas.012458999
Folding in lattice models with side chains
Mai Suan Li, D.K. Klimov and D. Thirumalai Computer Physics Communications 147 (1-2) 625 (2002) https://doi.org/10.1016/S0010-4655(02)00349-1
Kinetic nonoptimality and vibrational stability of proteins
Marek Cieplak and Trinh Xuan Hoang Proteins: Structure, Function, and Bioinformatics 44 (1) 20 (2001) https://doi.org/10.1002/prot.1067
EARLY EVENTS IN RNA FOLDING
D Thirumalai, Namkyung Lee, Sarah A Woodson and DK Klimov Annual Review of Physical Chemistry 52 (1) 751 (2001) https://doi.org/10.1146/annurev.physchem.52.1.751
Population analyses of kinetic partitioning in protein folding
Hironori K. Nakamura and Masaki Sasai Proteins: Structure, Function, and Bioinformatics 43 (3) 280 (2001) https://doi.org/10.1002/prot.1039
Competition between protein folding and aggregation: A three-dimensional lattice-model simulation
D. Bratko and H. W. Blanch The Journal of Chemical Physics 114 (1) 561 (2001) https://doi.org/10.1063/1.1330212
Role of counterion condensation in folding of the Tetrahymena ribozyme II. Counterion-dependence of folding kinetics
Susan L. Heilman-Miller, Jie Pan, D. Thirumalai and Sarah A. Woodson Journal of Molecular Biology 309 (1) 57 (2001) https://doi.org/10.1006/jmbi.2001.4660
Chaperonin-Mediated Protein Folding
D. Thirumalai and George H. Lorimer Annual Review of Biophysics and Biomolecular Structure 30 (1) 245 (2001) https://doi.org/10.1146/annurev.biophys.30.1.245
Roles of native topology and chain-length scaling in protein folding: A simulation study with a Gō-like model
Nobuyasu Koga and Shoji Takada Journal of Molecular Biology 313 (1) 171 (2001) https://doi.org/10.1006/jmbi.2001.5037
Early stages of homopolymer collapse
A. Halperin and Paul Goldbart Physical Review E 61 (1) 565 (2000) https://doi.org/10.1103/PhysRevE.61.565
Lattice model of transmembrane polypeptide folding
C.-M. Chen Physical Review E 63 (1) 010901 (2000) https://doi.org/10.1103/PhysRevE.63.010901
Scaling of Folding Properties in Go Models of Proteins
Marek Cieplak and Trinh Xuan Hoang Journal of Biological Physics 26 (4) 273 (2000) https://doi.org/10.1023/A:1010359024559
Mechanisms and kinetics of β-hairpin formation
D. K. Klimov and D. Thirumalai Proceedings of the National Academy of Sciences 97 (6) 2544 (2000) https://doi.org/10.1073/pnas.97.6.2544
Probing the role of local propensity in peptide turn formation
D. Mohanty, R. Elber and D. Thirumalai International Journal of Quantum Chemistry 80 (4-5) 1125 (2000) https://doi.org/10.1002/1097-461X(2000)80:4/5<1125::AID-QUA62>3.0.CO;2-J
Native topology determines force-induced unfolding pathways in globular proteins
D. K. Klimov and D. Thirumalai Proceedings of the National Academy of Sciences 97 (13) 7254 (2000) https://doi.org/10.1073/pnas.97.13.7254
Spin analogues of proteins: scaling of `folding' properties
Trinh Xuan Hoang, Nazar Sushko, Mai Suan Li and Marek Cieplak Journal of Physics A: Mathematical and General 33 (22) 3977 (2000) https://doi.org/10.1088/0305-4470/33/22/302
Molecular dynamics of folding of secondary structures in Go-type models of proteins
Trinh Xuan Hoang and Marek Cieplak The Journal of Chemical Physics 112 (15) 6851 (2000) https://doi.org/10.1063/1.481261
Fast folding of a ribozyme by stabilizing core interactions: evidence for multiple folding pathways in RNA 1 1Edited by I. Tinoco
Jie Pan, Michael L. Deras and Sarah A. Woodson Journal of Molecular Biology 296 (1) 133 (2000) https://doi.org/10.1006/jmbi.1999.3439
Simulation of heteropolymer collapse with an explicit solvent in two dimensions
James M. Polson and Martin J. Zuckermann The Journal of Chemical Physics 113 (3) 1283 (2000) https://doi.org/10.1063/1.481906
Fast folding of Escherichia coli cyclophilin A: a hypothesis of a unique hydrophobic core with a phenylalanine cluster
Teikichi Ikura, Toshiya Hayano, Nobuhiro Takahashi and Kunihiro Kuwajima Journal of Molecular Biology 297 (3) 791 (2000) https://doi.org/10.1006/jmbi.2000.3580
Magnesium-dependent folding of self-splicing RNA: Exploring the link between cooperativity, thermodynamics, and kinetics
Jie Pan, D. Thirumalai and Sarah A. Woodson Proceedings of the National Academy of Sciences 96 (11) 6149 (1999) https://doi.org/10.1073/pnas.96.11.6149
Folding in two-dimensional off-lattice models of proteins
Mai Li and Marek Cieplak Physical Review E 59 (1) 970 (1999) https://doi.org/10.1103/PhysRevE.59.970
Scaling behavior of stochastic minimization algorithms in a perfect funnel landscape
K. Hamacher and W. Wenzel Physical Review E 59 (1) 938 (1999) https://doi.org/10.1103/PhysRevE.59.938
Scaling of Folding Properties in Simple Models of Proteins
Marek Cieplak, Trinh Xuan Hoang and Mai Suan Li Physical Review Letters 83 (8) 1684 (1999) https://doi.org/10.1103/PhysRevLett.83.1684
Statistical Mechanics of Biocomplexity
Wolfgang Wenzel and Kay Hamacher Lecture Notes in Physics, Statistical Mechanics of Biocomplexity 527 62 (1999) https://doi.org/10.1007/BFb0105008
Submillisecond folding of the peripheral subunit-binding domain 1 1Edited by P. E. Wright
Shari Spector and Daniel P Raleigh Journal of Molecular Biology 293 (4) 763 (1999) https://doi.org/10.1006/jmbi.1999.3189
Deciphering the timescales and mechanisms of protein folding using minimal off-lattice models
D THIRUMALAI and D KLIMOV Current Opinion in Structural Biology 9 (2) 197 (1999) https://doi.org/10.1016/S0959-440X(99)80028-1
THE FAST PROTEIN FOLDING PROBLEM
M. Gruebele Annual Review of Physical Chemistry 50 (1) 485 (1999) https://doi.org/10.1146/annurev.physchem.50.1.485
Backbone dynamics, fast folding, and secondary structure formation in helical proteins and peptides
Corey Hardin, Zaida Luthey-Schulten and Peter G. Wolynes Proteins: Structure, Function, and Genetics 34 (3) 281 (1999) https://doi.org/10.1002/(SICI)1097-0134(19990215)34:3<281::AID-PROT2>3.0.CO;2-2
Searching for “downhill scenarios” in protein folding
William A. Eaton Proceedings of the National Academy of Sciences 96 (11) 5897 (1999) https://doi.org/10.1073/pnas.96.11.5897
Compactness of the denatured state of a fast-folding protein measured by submillisecond small-angle x-ray scattering
Lois Pollack, Mark W. Tate, Nicholas C. Darnton, James B. Knight, Sol M. Gruner, William A. Eaton and Robert H. Austin Proceedings of the National Academy of Sciences 96 (18) 10115 (1999) https://doi.org/10.1073/pnas.96.18.10115
Temperature dependence of the folding rate in a simple protein model: Search for a “glass” transition
A. Gutin, A. Sali, V. Abkevich, M. Karplus and E. I. Shakhnovich The Journal of Chemical Physics 108 (15) 6466 (1998) https://doi.org/10.1063/1.476053
On the transition coordinate for protein folding
Rose Du, Vijay S. Pande, Alexander Yu. Grosberg, Toyoichi Tanaka and Eugene S. Shakhnovich The Journal of Chemical Physics 108 (1) 334 (1998) https://doi.org/10.1063/1.475393
Self-consistently optimized energy functions for protein structure prediction by molecular dynamics
Kristin K. Koretke, Zaida Luthey-Schulten and Peter G. Wolynes Proceedings of the National Academy of Sciences 95 (6) 2932 (1998) https://doi.org/10.1073/pnas.95.6.2932
Rate of protein folding near the point of thermodynamic equilibrium between the coil and the most stable chain fold: Influence of chain knotting on the rate of folding
Alexei V Finkelstein and Azat Ya Badretdinov Folding and Design 3 (1) 67 (1998) https://doi.org/10.1016/S1359-0278(98)00009-1
Protein folding in the landscape perspective: Chevron plots and non-arrhenius kinetics
Hue Sun Chan and Ken A. Dill Proteins: Structure, Function, and Genetics 30 (1) 2 (1998) https://doi.org/10.1002/(SICI)1097-0134(19980101)30:1<2::AID-PROT2>3.0.CO;2-R
3D Protein Folds: Homologs Against Errors—a Simple Estimate Based on the Random Energy Model
Alexei V. Finkelstein Physical Review Letters 80 (21) 4823 (1998) https://doi.org/10.1103/PhysRevLett.80.4823
Comment on “Chain Length Scaling of Protein Folding Time”
Carlos J. Camacho Physical Review Letters 80 (1) 207 (1998) https://doi.org/10.1103/PhysRevLett.80.207
Native secondary structure formation in RNA may be a slave to tertiary folding
D. Thirumalai Proceedings of the National Academy of Sciences 95 (20) 11506 (1998) https://doi.org/10.1073/pnas.95.20.11506
Contact order, transition state placement and the refolding rates of single domain proteins 1 1Edited by P. E. Wright
Kevin W Plaxco, Kim T Simons and David Baker Journal of Molecular Biology 277 (4) 985 (1998) https://doi.org/10.1006/jmbi.1998.1645
Linking rates of folding in lattice models of proteins with underlying thermodynamic characteristics
D. K. Klimov and D. Thirumalai The Journal of Chemical Physics 109 (10) 4119 (1998) https://doi.org/10.1063/1.477012
Phase diagram of a Gaussian random copolymer
E. G. Timoshenko, Yu. A. Kuznetsov and K. A. Dawson Physical Review E 55 (5) 5750 (1997) https://doi.org/10.1103/PhysRevE.55.5750
THEORY OF PROTEIN FOLDING: The Energy Landscape Perspective
José Nelson Onuchic, Zaida Luthey-Schulten and Peter G. Wolynes Annual Review of Physical Chemistry 48 (1) 545 (1997) https://doi.org/10.1146/annurev.physchem.48.1.545
Statistical mechanics of a correlated energy landscape model for protein folding funnels
Steven S. Plotkin, Jin Wang and Peter G. Wolynes The Journal of Chemical Physics 106 (7) 2932 (1997) https://doi.org/10.1063/1.473355
A coarse-grained, “realistic” model for protein folding
Pierpaolo Bruscolini The Journal of Chemical Physics 107 (18) 7512 (1997) https://doi.org/10.1063/1.474991
Nucleation mechanisms in protein folding
Alan R Fersht Current Opinion in Structural Biology 7 (1) 3 (1997) https://doi.org/10.1016/S0959-440X(97)80002-4
From Levinthal to pathways to funnels
Ken A. Dill and Hue Sun Chan Nature Structural & Molecular Biology 4 (1) 10 (1997) https://doi.org/10.1038/nsb0197-10
Folding of RNA involves parallel pathways
Jie Pan, D. Thirumalai and Sarah A. Woodson Journal of Molecular Biology 273 (1) 7 (1997) https://doi.org/10.1006/jmbi.1997.1311
Protein folding kinetics: timescales, pathways and energy landscapes in terms of sequence-dependent properties
Thomas Veitshans, Dmitri Klimov and Devarajan Thirumalai Folding and Design 2 (1) 1 (1997) https://doi.org/10.1016/S1359-0278(97)00002-3
Statics, metastable states, and barriers in protein folding: A replica variational approach
Shoji Takada and Peter G. Wolynes Physical Review E 55 (4) 4562 (1997) https://doi.org/10.1103/PhysRevE.55.4562
Thermodynamics of protein folding: A statistical mechanical study of a small all-β protein
Zhuyan Guo and Charles L. Brooks Biopolymers 42 (7) 745 (1997) https://doi.org/10.1002/(SICI)1097-0282(199712)42:7<745::AID-BIP1>3.0.CO;2-T
Microscopic theory of critical folding nuclei and reconfiguration activation barriers in folding proteins
Shoji Takada and Peter G. Wolynes The Journal of Chemical Physics 107 (22) 9585 (1997) https://doi.org/10.1063/1.475256
Compaction and folding in model proteins
Ting-Lan Chiu and Richard A. Goldstein The Journal of Chemical Physics 107 (11) 4408 (1997) https://doi.org/10.1063/1.474782
Theoretical studies of protein-folding thermodynamics and kinetics
Eugene I Shakhnovich Current Opinion in Structural Biology 7 (1) 29 (1997) https://doi.org/10.1016/S0959-440X(97)80005-X
Viscosity Dependence of the Folding Rates of Proteins
D. K. Klimov, and D. Thirumalai Physical Review Letters 79 (2) 317 (1997) https://doi.org/10.1103/PhysRevLett.79.317
Entropic Barriers, Frustration, and Order: Basic Ingredients in Protein Folding
Carlos J. Camacho Physical Review Letters 77 (11) 2324 (1996) https://doi.org/10.1103/PhysRevLett.77.2324
On potential energy surfaces and relaxation to the global minimum
Jonathan P. K. Doye and David J. Wales The Journal of Chemical Physics 105 (18) 8428 (1996) https://doi.org/10.1063/1.472697
Chain Length Scaling of Protein Folding Time
A. M. Gutin, V. I. Abkevich and E. I. Shakhnovich Physical Review Letters 77 (27) 5433 (1996) https://doi.org/10.1103/PhysRevLett.77.5433
Optical Triggers of Protein Folding
C.-K. Chan, J. Hofrichter, W. A. Eaton, J. R. Winkler and H. B. Gray Science 274 (5287) 628 (1996) https://doi.org/10.1126/science.274.5287.628
Dynamics of Random Hydrophobic-Hydrophilic Copolymers with Implications for Protein Folding
D. Thirumalai, V. Ashwin and J. K. Bhattacharjee Physical Review Letters 77 (27) 5385 (1996) https://doi.org/10.1103/PhysRevLett.77.5385
Criterion that Determines the Foldability of Proteins
D. K. Klimov and D. Thirumalai Physical Review Letters 76 (21) 4070 (1996) https://doi.org/10.1103/PhysRevLett.76.4070
Kinetics of a Gaussian random copolymer as a prototype for protein folding
E. G. Timoshenko, Yu. A. Kuznetsov and K. A. Dawson Physical Review E 54 (4) 4071 (1996) https://doi.org/10.1103/PhysRevE.54.4071
Pages :
101 à 189 sur 189 articles