Article cité par

La fonctionnalité Article cité par… liste les citations d'un article. Ces citations proviennent de la base de données des articles de EDP Sciences, ainsi que des bases de données d'autres éditeurs participant au programme CrossRef Cited-by Linking Program. Vous pouvez définir une alerte courriel pour être prévenu de la parution d'un nouvel article citant " cet article (voir sur la page du résumé de l'article le menu à droite).

Article cité :

Dynamics of Lie symmetry, Paul-Painlevé approach, bifurcation aalysis to the Ivancevic option pricing model via a optimal system of Lie subalgebra

Ibtehal Alazman
AIMS Mathematics 10 (4) 8965 (2025)
https://doi.org/10.3934/math.2025411

Optimal lock-down intensity: A stochastic pandemic control approach of path integral

Paramahansa Pramanik
Computational and Mathematical Biophysics 11 (1) (2023)
https://doi.org/10.1515/cmb-2023-0110

Path integral Monte Carlo method for option pricing

Pietro Capuozzo, Emanuele Panella, Tancredi Schettini Gherardini and Dimitri D. Vvedensky
Physica A: Statistical Mechanics and its Applications 581 126231 (2021)
https://doi.org/10.1016/j.physa.2021.126231

The Probability Flow in the Stock Market and Spontaneous Symmetry Breaking in Quantum Finance

Ivan Arraut, João Alexandre Lobo Marques and Sergio Gomes
Mathematics 9 (21) 2777 (2021)
https://doi.org/10.3390/math9212777

Generalized heat diffusion equations with variable coefficients and their fractalization from the Black-Scholes equation

Rami Ahmad El-Nabulsi and Alireza Khalili Golmankhaneh
Communications in Theoretical Physics 73 (5) 055002 (2021)
https://doi.org/10.1088/1572-9494/abeb05

An analytical perturbative solution to the Merton–Garman model using symmetries

Xavier Calmet and Nathaniel Wiesendanger Shaw
Journal of Futures Markets 40 (1) 3 (2020)
https://doi.org/10.1002/fut.22061

An accurate European option pricing model under Fractional Stable Process based on Feynman Path Integral

Chao Ma, Qinghua Ma, Haixiang Yao and Tiancheng Hou
Physica A: Statistical Mechanics and its Applications 494 87 (2018)
https://doi.org/10.1016/j.physa.2017.11.120

Dynamic optimization and its relation to classical and quantum constrained systems

Mauricio Contreras, Rely Pellicer and Marcelo Villena
Physica A: Statistical Mechanics and its Applications 479 12 (2017)
https://doi.org/10.1016/j.physa.2017.02.075

Influence of periodic volatility on the stability of financial market

Zhou Ruo-Wei, Li Jiang-Cheng, Dong Zhi-Wei, Li Yun-Xian and Qian Zhen-Wei
Acta Physica Sinica 66 (4) 040501 (2017)
https://doi.org/10.7498/aps.66.040501

Feynman path integrals and asymptotic expansions for transition probability densities of some Lévy driven financial markets

Aziz Issaka and Indranil SenGupta
Journal of Applied Mathematics and Computing 54 (1-2) 159 (2017)
https://doi.org/10.1007/s12190-016-1002-2

Feynman Path Integrals and Asymptotic Expansions for Transition Probability Densities of Some Levy Driven Financial Markets

Aziz Issaka and Indranil SenGupta
SSRN Electronic Journal (2016)
https://doi.org/10.2139/ssrn.2724913

The roles of mean residence time on herd behavior in a financial market

Jiang-Cheng Li, Yun-Xian Li, Nian-Sheng Tang and Dong-Cheng Mei
Physica A: Statistical Mechanics and its Applications 462 350 (2016)
https://doi.org/10.1016/j.physa.2016.06.061

Multi-asset Black–Scholes model as a variable second class constrained dynamical system

M. Bustamante and M. Contreras
Physica A: Statistical Mechanics and its Applications 457 540 (2016)
https://doi.org/10.1016/j.physa.2016.03.063

Feynman path integral application on deriving black-scholes diffusion equation for european option pricing

Briandhika Utama and Acep Purqon
Journal of Physics: Conference Series 739 012021 (2016)
https://doi.org/10.1088/1742-6596/739/1/012021

Roles of capital flow on the stability of a market system

Jiang-Cheng Li, Nian-Sheng Tang, Dong-Cheng Mei and Deng-Ke Xu
Physica A: Statistical Mechanics and its Applications 436 14 (2015)
https://doi.org/10.1016/j.physa.2015.04.030

Stochastic volatility models at as second class constrained Hamiltonian systems

Mauricio Contreras G.
Physica A: Statistical Mechanics and its Applications 405 289 (2014)
https://doi.org/10.1016/j.physa.2014.03.030

Option pricing, stochastic volatility, singular dynamics and constrained path integrals

Mauricio Contreras and Sergio A. Hojman
Physica A: Statistical Mechanics and its Applications 393 391 (2014)
https://doi.org/10.1016/j.physa.2013.08.057

Path integral approach to Asian options in the Black–Scholes model

J.P.A. Devreese, D. Lemmens and J. Tempere
Physica A: Statistical Mechanics and its Applications 389 (4) 780 (2010)
https://doi.org/10.1016/j.physa.2009.10.020

Path integral approach to closed-form option pricing formulas with applications to stochastic volatility and interest rate models

D. Lemmens, M. Wouters, J. Tempere and S. Foulon
Physical Review E 78 (1) (2008)
https://doi.org/10.1103/PhysRevE.78.016101

A path integral approach to asset-liability management

Marc Decamps, Ann De Schepper and Marc Goovaerts
Physica A: Statistical Mechanics and its Applications 363 (2) 404 (2006)
https://doi.org/10.1016/j.physa.2005.08.059

Applications of δ-function perturbation to the pricing of derivative securities

Marc Decamps, Ann De Schepper and Marc Goovaerts
Physica A: Statistical Mechanics and its Applications 342 (3-4) 677 (2004)
https://doi.org/10.1016/j.physa.2004.05.035

Hamiltonian and potentials in derivative pricing models: exact results and lattice simulations

Belal E. Baaquie, Claudio Corianò and Marakani Srikant
Physica A: Statistical Mechanics and its Applications 334 (3-4) 531 (2004)
https://doi.org/10.1016/j.physa.2003.10.080

A discussion on embedding the Black–Scholes option pricing model in a quantum physics setting

Emmanuel E Haven
Physica A: Statistical Mechanics and its Applications 304 (3-4) 507 (2002)
https://doi.org/10.1016/S0378-4371(01)00568-4

Probability distribution of returns in the Heston model with stochastic volatility*

Adrian A Dragulescu and Victor M Yakovenko
Quantitative Finance 2 (6) 443 (2002)
https://doi.org/10.1088/1469-7688/2/6/303