La fonctionnalité Article cité par… liste les citations d'un article. Ces citations proviennent de la base de données des articles de EDP Sciences, ainsi que des bases de données d'autres éditeurs participant au programme CrossRef Cited-by Linking Program . Vous pouvez définir une alerte courriel pour être prévenu de la parution d'un nouvel article citant " cet article (voir sur la page du résumé de l'article le menu à droite).
Article cité :
Belal E. Baaquie
J. Phys. I France, 7 12 (1997) 1733-1753
Citations de cet article :
51 articles
Dynamics of Lie symmetry, Paul-Painlevé approach, bifurcation aalysis to the Ivancevic option pricing model via a optimal system of Lie subalgebra
Ibtehal Alazman AIMS Mathematics 10 (4) 8965 (2025) https://doi.org/10.3934/math.2025411
Optimal lock-down intensity: A stochastic pandemic control approach of path integral
Paramahansa Pramanik Computational and Mathematical Biophysics 11 (1) (2023) https://doi.org/10.1515/cmb-2023-0110
Optimization of a dynamic profit function using Euclidean path integral
Paramahansa Pramanik and Alan M. Polansky SN Business & Economics 4 (1) (2023) https://doi.org/10.1007/s43546-023-00602-5
Quantum effects in an expanded Black–Scholes model
Anantya Bhatnagar and Dimitri D. Vvedensky The European Physical Journal B 95 (8) (2022) https://doi.org/10.1140/epjb/s10051-022-00402-0
Wild Randomness, and the application of Hyperbolic Diffusion in Financial Modelling
William Hicks SSRN Electronic Journal (2021) https://doi.org/10.2139/ssrn.3764903
Path integral Monte Carlo method for option pricing
Pietro Capuozzo, Emanuele Panella, Tancredi Schettini Gherardini and Dimitri D. Vvedensky Physica A: Statistical Mechanics and its Applications 581 126231 (2021) https://doi.org/10.1016/j.physa.2021.126231
The Probability Flow in the Stock Market and Spontaneous Symmetry Breaking in Quantum Finance
Ivan Arraut, João Alexandre Lobo Marques and Sergio Gomes Mathematics 9 (21) 2777 (2021) https://doi.org/10.3390/math9212777
Endogenous stochastic arbitrage bubbles and the Black–Scholes model
Mauricio Contreras G. Physica A: Statistical Mechanics and its Applications 583 126323 (2021) https://doi.org/10.1016/j.physa.2021.126323
Generalized heat diffusion equations with variable coefficients and their fractalization from the Black-Scholes equation
Rami Ahmad El-Nabulsi and Alireza Khalili Golmankhaneh Communications in Theoretical Physics 73 (5) 055002 (2021) https://doi.org/10.1088/1572-9494/abeb05
An analytical perturbative solution to the Merton–Garman model using symmetries
Xavier Calmet and Nathaniel Wiesendanger Shaw Journal of Futures Markets 40 (1) 3 (2020) https://doi.org/10.1002/fut.22061
Pricing of stochastic volatility stock index option based on Feynman path integral
Ling Feng and Wan-Ni Ji Acta Physica Sinica 68 (20) 203101 (2019) https://doi.org/10.7498/aps.68.20190714
An accurate European option pricing model under Fractional Stable Process based on Feynman Path Integral
Chao Ma, Qinghua Ma, Haixiang Yao and Tiancheng Hou Physica A: Statistical Mechanics and its Applications 494 87 (2018) https://doi.org/10.1016/j.physa.2017.11.120
The Money Formula
The Money Formula 227 (2017) https://doi.org/10.1002/9781119358725.biblo
The Money Formula
The Money Formula 227 (2017) https://doi.org/10.1002/9781119358725.biblio
Dynamic optimization and its relation to classical and quantum constrained systems
Mauricio Contreras, Rely Pellicer and Marcelo Villena Physica A: Statistical Mechanics and its Applications 479 12 (2017) https://doi.org/10.1016/j.physa.2017.02.075
Volatility Smile as Relativistic Effect
Zura Kakushadze SSRN Electronic Journal (2017) https://doi.org/10.2139/ssrn.2827916
Nonlinear Schrödinger approach to European option pricing
Marcin Wróblewski Open Physics 15 (1) 280 (2017) https://doi.org/10.1515/phys-2017-0031
Influence of periodic volatility on the stability of financial market
Zhou Ruo-Wei, Li Jiang-Cheng, Dong Zhi-Wei, Li Yun-Xian and Qian Zhen-Wei Acta Physica Sinica 66 (4) 040501 (2017) https://doi.org/10.7498/aps.66.040501
Feynman path integrals and asymptotic expansions for transition probability densities of some Lévy driven financial markets
Aziz Issaka and Indranil SenGupta Journal of Applied Mathematics and Computing 54 (1-2) 159 (2017) https://doi.org/10.1007/s12190-016-1002-2
Volatility smile as relativistic effect
Zura Kakushadze Physica A: Statistical Mechanics and its Applications 475 59 (2017) https://doi.org/10.1016/j.physa.2017.02.012
Feynman Path Integrals and Asymptotic Expansions for Transition Probability Densities of Some Levy Driven Financial Markets
Aziz Issaka and Indranil SenGupta SSRN Electronic Journal (2016) https://doi.org/10.2139/ssrn.2724913
The roles of mean residence time on herd behavior in a financial market
Jiang-Cheng Li, Yun-Xian Li, Nian-Sheng Tang and Dong-Cheng Mei Physica A: Statistical Mechanics and its Applications 462 350 (2016) https://doi.org/10.1016/j.physa.2016.06.061
Multi-asset Black–Scholes model as a variable second class constrained dynamical system
M. Bustamante and M. Contreras Physica A: Statistical Mechanics and its Applications 457 540 (2016) https://doi.org/10.1016/j.physa.2016.03.063
Feynman path integral application on deriving black-scholes diffusion equation for european option pricing
Briandhika Utama and Acep Purqon Journal of Physics: Conference Series 739 012021 (2016) https://doi.org/10.1088/1742-6596/739/1/012021
Roles of capital flow on the stability of a market system
Jiang-Cheng Li, Nian-Sheng Tang, Dong-Cheng Mei and Deng-Ke Xu Physica A: Statistical Mechanics and its Applications 436 14 (2015) https://doi.org/10.1016/j.physa.2015.04.030
Path Integral and Asset Pricing
Zura Kakushadze SSRN Electronic Journal (2014) https://doi.org/10.2139/ssrn.2506430
Stochastic volatility models at as second class constrained Hamiltonian systems
Mauricio Contreras G. Physica A: Statistical Mechanics and its Applications 405 289 (2014) https://doi.org/10.1016/j.physa.2014.03.030
Option volatility and the acceleration Lagrangian
Belal E. Baaquie and Yang Cao Physica A: Statistical Mechanics and its Applications 393 337 (2014) https://doi.org/10.1016/j.physa.2013.07.074
Physical approach to price momentum and its application to momentum strategy
Jaehyung Choi Physica A: Statistical Mechanics and its Applications 415 61 (2014) https://doi.org/10.1016/j.physa.2014.07.075
Effects of time delay on stochastic resonance of the stock prices in financial system
Jiang-Cheng Li, Chun Li and Dong-Cheng Mei Physics Letters A (2014) https://doi.org/10.1016/j.physleta.2014.05.036
Option pricing, stochastic volatility, singular dynamics and constrained path integrals
Mauricio Contreras and Sergio A. Hojman Physica A: Statistical Mechanics and its Applications 393 391 (2014) https://doi.org/10.1016/j.physa.2013.08.057
The roles of extrinsic periodic information on the stability of stock price
Jiang-Cheng Li and Dong-Cheng Mei The European Physical Journal B 87 (2) (2014) https://doi.org/10.1140/epjb/e2014-41033-6
Reverse resonance in stock prices of financial system with periodic information
Jiang-Cheng Li and Dong-Cheng Mei Physical Review E 88 (1) (2013) https://doi.org/10.1103/PhysRevE.88.012811
Physical Approach to Price Momentum and Its Application to Momentum Strategy
Jaehyung Choi SSRN Electronic Journal (2012) https://doi.org/10.2139/ssrn.2128946
Pseudo Hermitian formulation of the quantum Black–Scholes Hamiltonian
T.K. Jana and P. Roy Physica A: Statistical Mechanics and its Applications 391 (8) 2636 (2012) https://doi.org/10.1016/j.physa.2011.12.012
Quantum-like model of behavioral response computation using neural oscillators
J. Acacio de Barros Biosystems 110 (3) 171 (2012) https://doi.org/10.1016/j.biosystems.2012.10.002
Supersymmetry in option pricing
T.K. Jana and P. Roy Physica A: Statistical Mechanics and its Applications 390 (12) 2350 (2011) https://doi.org/10.1016/j.physa.2011.02.027
Path integral approach to Asian options in the Black–Scholes model
J.P.A. Devreese, D. Lemmens and J. Tempere Physica A: Statistical Mechanics and its Applications 389 (4) 780 (2010) https://doi.org/10.1016/j.physa.2009.10.020
Path integral approach to closed-form option pricing formulas with applications to stochastic volatility and interest rate models
D. Lemmens, M. Wouters, J. Tempere and S. Foulon Physical Review E 78 (1) (2008) https://doi.org/10.1103/PhysRevE.78.016101
Pricing exotic options in a path integral approach
G. Bormetti, G. Montagna, N. Moreni and O. Nicrosini Quantitative Finance 6 (1) 55 (2006) https://doi.org/10.1080/14697680500510878
A path integral approach to asset-liability management
Marc Decamps, Ann De Schepper and Marc Goovaerts Physica A: Statistical Mechanics and its Applications 363 (2) 404 (2006) https://doi.org/10.1016/j.physa.2005.08.059
Applications of δ-function perturbation to the pricing of derivative securities
Marc Decamps, Ann De Schepper and Marc Goovaerts Physica A: Statistical Mechanics and its Applications 342 (3-4) 677 (2004) https://doi.org/10.1016/j.physa.2004.05.035
Hamiltonian and potentials in derivative pricing models: exact results and lattice simulations
Belal E. Baaquie, Claudio Corianò and Marakani Srikant Physica A: Statistical Mechanics and its Applications 334 (3-4) 531 (2004) https://doi.org/10.1016/j.physa.2003.10.080
Interdisciplinary Computing in Java Programming
Sun-Chong Wang Interdisciplinary Computing in Java Programming 167 (2003) https://doi.org/10.1007/978-1-4615-0377-4_10
Black–Scholes model under subordination
A.A. Stanislavsky Physica A: Statistical Mechanics and its Applications 318 (3-4) 469 (2003) https://doi.org/10.1016/S0378-4371(02)01372-9
A discussion on embedding the Black–Scholes option pricing model in a quantum physics setting
Emmanuel E Haven Physica A: Statistical Mechanics and its Applications 304 (3-4) 507 (2002) https://doi.org/10.1016/S0378-4371(01)00568-4
Stochastic calculus for assets with non-Gaussian price fluctuations
Hagen Kleinert Physica A: Statistical Mechanics and its Applications 311 (3-4) 536 (2002) https://doi.org/10.1016/S0378-4371(02)00803-8
A path integral way to option pricing
Guido Montagna, Oreste Nicrosini and Nicola Moreni Physica A: Statistical Mechanics and its Applications 310 (3-4) 450 (2002) https://doi.org/10.1016/S0378-4371(02)00796-3
Probability distribution of returns in the Heston model with stochastic volatility*
Adrian A Dragulescu and Victor M Yakovenko Quantitative Finance 2 (6) 443 (2002) https://doi.org/10.1088/1469-7688/2/6/303
Quantum field theory of forward rates with stochastic volatility
Belal Baaquie Physical Review E 65 (5) 056122 (2002) https://doi.org/10.1103/PhysRevE.65.056122
Path Dependent Option Pricing: The Path Integral Partial Averaging Method
Andrew Matacz SSRN Electronic Journal (2000) https://doi.org/10.2139/ssrn.249570