La fonctionnalité Article cité par… liste les citations d'un article. Ces citations proviennent de la base de données des articles de EDP Sciences, ainsi que des bases de données d'autres éditeurs participant au programme CrossRef Cited-by Linking Program . Vous pouvez définir une alerte courriel pour être prévenu de la parution d'un nouvel article citant " cet article (voir sur la page du résumé de l'article le menu à droite).
Article cité :
Jin Wang , Steven S. Plotkin , Peter G. Wolynes
J. Phys. I France, 7 3 (1997) 395-421
Citations de cet article :
30 articles
Inferring potential landscapes from noisy trajectories of particles within an optical feedback trap
J. Shepard Bryan, Prithviraj Basak, John Bechhoefer and Steve Pressé iScience 25 (9) 104731 (2022) https://doi.org/10.1016/j.isci.2022.104731
Physics of biomolecular recognition and conformational dynamics
Wen-Ting Chu, Zhiqiang Yan, Xiakun Chu, et al. Reports on Progress in Physics 84 (12) 126601 (2021) https://doi.org/10.1088/1361-6633/ac3800
Activated dynamics: An intermediate model between the random energy model and thep-spin model
Marco Baity-Jesi, Alexandre Achard-de Lustrac and Giulio Biroli Physical Review E 98 (1) (2018) https://doi.org/10.1103/PhysRevE.98.012133
Anomalous dimensionality dependence of diffusion in a rugged energy landscape: How pathological is one dimension?
Kazuhiko Seki, Kaushik Bagchi and Biman Bagchi The Journal of Chemical Physics 144 (19) (2016) https://doi.org/10.1063/1.4948936
Relationship between entropy and diffusion: A statistical mechanical derivation of Rosenfeld expression for a rugged energy landscape
Kazuhiko Seki and Biman Bagchi The Journal of Chemical Physics 143 (19) (2015) https://doi.org/10.1063/1.4935969
Fractional Cooperativity of a Few-State System in the Environment
V.I. Teslenko and O.L. Kapitanchuk Ukrainian Journal of Physics 60 (11) 1163 (2015) https://doi.org/10.15407/ujpe60.11.1163
Diffusion on a rugged energy landscape with spatial correlations
Saikat Banerjee, Rajib Biswas, Kazuhiko Seki and Biman Bagchi The Journal of Chemical Physics 141 (12) (2014) https://doi.org/10.1063/1.4895905
Fractal Symmetry of Protein Interior
Anirban Banerji SpringerBriefs in Biochemistry and Molecular Biology, Fractal Symmetry of Protein Interior 19 (2013) https://doi.org/10.1007/978-3-0348-0651-0_2
Discrete Kinetic Models from Funneled Energy Landscape Simulations
Nicholas P. Schafer, Ryan M. B. Hoffman, Anat Burger, et al. PLoS ONE 7 (12) e50635 (2012) https://doi.org/10.1371/journal.pone.0050635
Theory of Thermally Activated Ionization and Dissociation of Bound States
A. Zaccone and E. M. Terentjev Physical Review Letters 108 (3) (2012) https://doi.org/10.1103/PhysRevLett.108.038302
Coordinate and time-dependent diffusion dynamics in protein folding
Ronaldo J. Oliveira, Paul C. Whitford, Jorge Chahine, Vitor B.P. Leite and Jin Wang Methods 52 (1) 91 (2010) https://doi.org/10.1016/j.ymeth.2010.04.016
The transition state transit time of WW domain folding is controlled by energy landscape roughness
Feng Liu, Marcelo Nakaema and Martin Gruebele The Journal of Chemical Physics 131 (19) (2009) https://doi.org/10.1063/1.3262489
Variationally Determined Free Energy Profiles for Structural Models of Proteins: Characteristic Temperatures for Folding and Trapping
Tongye Shen, Chenghang Zong, John J. Portman and Peter G. Wolynes The Journal of Physical Chemistry B 112 (19) 6074 (2008) https://doi.org/10.1021/jp076280n
An analytical study of the interplay between geometrical and energetic effects in protein folding
Yoko Suzuki, Jeff K. Noel and José N. Onuchic The Journal of Chemical Physics 128 (2) (2008) https://doi.org/10.1063/1.2812956
Determination of Barrier Heights and Prefactors from Protein Folding Rate Data
S.S. Plotkin Biophysical Journal 88 (6) 3762 (2005) https://doi.org/10.1529/biophysj.104.052548
The effects of nonnative interactions on protein folding rates: Theory and simulation
Cecilia Clementi and Steven S. Plotkin Protein Science 13 (7) 1750 (2004) https://doi.org/10.1110/ps.03580104
Buffed energy landscapes: Another solution to the kinetic paradoxes of protein folding
S. S. Plotkin and P. G. Wolynes Proceedings of the National Academy of Sciences 100 (8) 4417 (2003) https://doi.org/10.1073/pnas.0330720100
Energy landscape picture of supercooled liquids: Application of a generalized random energy model
Masaki Sasai The Journal of Chemical Physics 118 (23) 10651 (2003) https://doi.org/10.1063/1.1574781
New Kinds of Phase Transitions: Transformations in Disordered Substances
Masaki Sasai New Kinds of Phase Transitions: Transformations in Disordered Substances 121 (2002) https://doi.org/10.1007/978-94-010-0595-1_9
Speeding protein folding beyond the Gō model: How a little frustration sometimes helps
Steven S. Plotkin Proteins: Structure, Function, and Bioinformatics 45 (4) 337 (2001) https://doi.org/10.1002/prot.1154
Role of explicitly cooperative interactions in protein folding funnels: A simulation study
Michael P. Eastwood and Peter G. Wolynes The Journal of Chemical Physics 114 (10) 4702 (2001) https://doi.org/10.1063/1.1315994
Statistical mechanics of protein-like heteropolymers
Ruxandra I. Dima, Jayanth R. Banavar, Marek Cieplak and Amos Maritan Proceedings of the National Academy of Sciences 96 (9) 4904 (1999) https://doi.org/10.1073/pnas.96.9.4904
Backbone dynamics, fast folding, and secondary structure formation in helical proteins and peptides
Corey Hardin, Zaida Luthey-Schulten and Peter G. Wolynes Proteins: Structure, Function, and Genetics 34 (3) 281 (1999) https://doi.org/10.1002/(SICI)1097-0134(19990215)34:3<281::AID-PROT2>3.0.CO;2-2
Protein folding mechanisms and the multidimensional folding funnel
Nicholas D. Socci, José Nelson Onuchic and Peter G. Wolynes Proteins: Structure, Function, and Genetics 32 (2) 136 (1998) https://doi.org/10.1002/(SICI)1097-0134(19980801)32:2<136::AID-PROT2>3.0.CO;2-J
Non-Markovian Configurational Diffusion and Reaction Coordinates for Protein Folding
Steven S. Plotkin and Peter G. Wolynes Physical Review Letters 80 (22) 5015 (1998) https://doi.org/10.1103/PhysRevLett.80.5015
Temperature dependence of the folding rate in a simple protein model: Search for a “glass” transition
A. Gutin, A. Sali, V. Abkevich, M. Karplus and E. I. Shakhnovich The Journal of Chemical Physics 108 (15) 6466 (1998) https://doi.org/10.1063/1.476053
Pathways for protein folding: is a new view needed?
Vijay S Pande, Alexander Yu Grosberg, Toyoichi Tanaka and Daniel S Rokhsar Current Opinion in Structural Biology 8 (1) 68 (1998) https://doi.org/10.1016/S0959-440X(98)80012-2
Self-consistently optimized energy functions for protein structure prediction by molecular dynamics
Kristin K. Koretke, Zaida Luthey-Schulten and Peter G. Wolynes Proceedings of the National Academy of Sciences 95 (6) 2932 (1998) https://doi.org/10.1073/pnas.95.6.2932
THEORY OF PROTEIN FOLDING: The Energy Landscape Perspective
José Nelson Onuchic, Zaida Luthey-Schulten and Peter G. Wolynes Annual Review of Physical Chemistry 48 (1) 545 (1997) https://doi.org/10.1146/annurev.physchem.48.1.545
Folding funnels and energy landscapes of larger proteins within the capillarity approximation
Peter G. Wolynes Proceedings of the National Academy of Sciences 94 (12) 6170 (1997) https://doi.org/10.1073/pnas.94.12.6170