Issue |
J. Phys. I France
Volume 5, Number 4, April 1995
|
|
---|---|---|
Page(s) | 437 - 442 | |
DOI | https://doi.org/10.1051/jp1:1995100 |
J. Phys. I France 5 (1995) 437-442
Quantum Transport in the Charge-Density-Wave State of the Quasi Two-Dimensional Bronzes
(
)
(
)
C. Le Touze1, G. Bonfait2, C. Schlenker1, J. Dumas1, M. Almeida2, M. Greenblatt3 and Z.S. Teweldemedhin3
1 Laboratoire d'Etudes des Propriétés Electroniques des Solides CNRS, BP 166, 38042 Grenoble Cedex 9, France
2 Departamento de Quimica, ICEN, INETI, P-2686 Sacavem Codex, Portugal
3 Department of Chemistry, Rutgers, The State University of New Jersey, Piscataway, N.J. 08855-0939, U.S.A.
(Received 6 February 1995, accepted 17 February 1995)
Abstract
Magnetotransport has been studied on the quasi two-dimensional monophosphate tungsten bronzes
(PO
2)
4(WO
3)
2m for
m=4 and 6, between 0.3 and 300 K in fields up to 18 T. These
compounds show several charge density wave transitions. Large magnetoresistance is found in the
charge-density-wave state for magnetic fields applied perpendicular to the layers. At low
temperatures, Shubnikov-de Haas oscillations are attributed to the existence of small carrier
pockets left by the charge density wave gap opening. The size of these pockets is of the order of a
few % of the two-dimensional high temperature Brillouin zone and smaller in the case
m=6 than in
m=4. This is due to a more pronounced low-dimensional character and therefore to a better Fermi
surface nesting in the compound
m=6 than in
m=4.
© Les Editions de Physique 1995