J. Phys. I France
Volume 3, Numéro 5, May 1993
Page(s) 1093 - 1104
References of J. Phys. I France 3 1093-1104
  1. Casimir H. B. G., Proc. K. Ned. Akad. Wet. 51 (1948) 793 ; a recent review may be found in : Plunien G., M $\ddot{\textrm{U}}$Ller B. and Greiner W., Phys. Rep. 134 (1986) 87 [CrossRef] [MathSciNet].
  2. Jaekel M. T. and Reynaud S., J. Phys. I France 1 (1991) 1395 [EDP Sciences] [CrossRef].
  3. Einstein A., Ann. Phys. 18 (1905) 639 [reprinted in english in The Principle of Relativity (Dover Publication, 1952)] ; Ann. Phys. 20 (1906) 627.
  4. Pais biography of Einstein gives a historical account of the successive demonstrations of this law : Pais A. $\ll$ Subtle is the Lord... $\gg$ (Oxford University Press, 1982), ch. 7.
  5. See for instance : Feynmann R. P. and Hibbs A. R., $\ll$ Quantum Mechanics and Path Integrals $\gg$ (Mac Graw Hill, 1965) p. 244 ; Enz C. P., in $\ll$ Physical Reality and Mathematical Description $\gg$ C. P. Enz and J. Mehra Eds. (Dordrecht, 1974) p. 124 ; a recent discussion containing references is given in: Wesson P. S., Astrophys. J. 378 (1991) 466 [CrossRef].
  6. Sciama D. W., in $\ll$ The Philosophy of Vacuum $\gg$ S. Saunders and H. R. Brown Eds. (Clarendon, 1991) p. 137.
  7. Jaekel M. T. and Reynaud S., Quantum Opt. 4 (1992) 39 [CrossRef] [MathSciNet].
  8. Jaekel M. T. and Reynaud S., J. Phys. I France 2 (1992) 149 [EDP Sciences] [CrossRef].
  9. Barton G., J. Phys. A 24 (1991) 991 [CrossRef]; J. Phys. A 24 (1991) 5533; in $\ll$ Cavity Quantum Electrodynamics $\gg$ (Supplement : Advances in Atomic, Molecular and Optical Physics), P. Berman Ed. (Academic Press to appear).
  10. Fulling S. A. and Davies P. C. W., Proc. R. Soc. London A 348 (1976) 393.
  11. Boyer T. H., Sci. Am. 253 (1985) 56.
  12. Hawking S. W., Commun. Math. Phys. 43 (1975) 199 [MathSciNet]; Davies P. C. W., J. Phys. A 8 (1975) 609 [CrossRef]; Unruh W. G., Phys. Rev. D 14 (1976) 870 [CrossRef]; Birrell N. D. and Davies P. C. W., $\ll$ Quantum fields in curved space $\gg$ (Cambridge, 1982) and references therein.
  13. Note however that friction and mass corrections appear for a mirror in thermal fields : Jaekel M. T. and Reynaud S., Phys. Lett. A 172 (1993) 319 [CrossRef].
  14. Einstein A., Jahrb. Radioakt. Elektron. 4 (1907) 411, 5 (1908) 98 (1908) [translated in English and commented by Schwartz H. M., Am. J. Phys. 45 (1977) 512 [CrossRef], 811, 899].
  15. We have added the contributions of intracavity and outer fields, both contributions being derived from the results of Fulling and Davies [10]; the same expression is obtained as the limit of perfect reflection in reference [7].
  16. Landau L. D. and Lifshitz E. M., $\ll$ Cours de Physique Théorique : Physique Statistique $\gg$ (Mir, 1967) ch. 12 ; Kubo R., Rep. Progr. Phys. 29 (1966) 255 [CrossRef].
  17. Jaekel M. T. and Reynaud S., Phys. Lett. A 167 (1992) 227 [CrossRef] [MathSciNet].
  18. Resonant enhancement of the interaction of atoms with vacuum has been studied for instance by : Kleppner D., Phys. Rev. Lett. 47 (1981) 233 [CrossRef]; Haroche S., in $\ll$ New Trends in Atomic Physics $\gg$ (Les Houches Summer School) G. Grynberg and R. Stora Eds. (North Holland, Amsterdam, 1984) p. 193 ; Enhancement of vacuum radiation pressure in a cavity has also been studied by : Braginski V. B. and Khalili F. Ya., Phys. Lett. A 161 (1991) 197 [CrossRef].
  19. We rewrite equations (18c) and (19) of reference [14] with the appropriate changes of notation : $\upsilon$ stands for the global velocity of the system (in place of q in Ref. [14]; corrections of the order of $\upsilon^{2}$/c2 are neglected), Ef for the internal energy (Eo), F (F = F1 = -F2for the internal force (Ko), q for the distance between the two points of application of the force ( $\delta_{o}$).
  20. In equation (14b), (Ef - Fq) is replaced by (Ef + pV ), where p is the pressure and V the volume (see Ref. [14]); the change of sign is due to the fact that a positive pressure p represents a repulsion between the two points of application, while a positive force F is defined here as an attraction.
  21. The related case of mechanical systems containing stressed threads or rods, as well as controversies held on it since the birth of relativity up to recent times, are presented for instance in: Martins R. de A., Am. J. Phys. 50 (1982) 1008 [CrossRef].
  22. Einstein A., Vierteljahrsschrift Gerichtliche Medizin. 44 (1912) 37; This attempt is described for example by : Kastler A., Mémoires de la Classe des Sciences de l'Académie Royale de Belgique, 2e série 44 (1) (1981) 13 [reprinted in Euvre Scientifique (Editions du Cnrs, Paris 1988) p. 1230] ; Pais A., reference [4] ch. 15e.
  23. Einstein A., $\ll$ The Meaning of Relativity $\gg$ (Princeton University Press, 1946).
  24. Rosen N., in $\ll$ To fulfill a vision $\gg$ Y. Ne'eman Ed. (Addison Wesley, 1981) ch. 5.
  25. This idea has often been expressed; see as an example: De Witt B. S., in $\ll$ General relativity : An Einstein Centenary Survey $\gg$ S. W. Hawking and W. Israel Eds. (Cambridge, 1979) ch. 14.
  26. See for example: Dicke R. H., Rev. Modern Phys. 29 (1957); 363; Sakharob A. D., Doklady Akad. Nauk Sssr 177 (1967) 70 Sov. Phys. Doklady 12 (1968) 1040; see also a list of references in: Puthoff H. E., Phys. Rev. A 39 (1989) 2333 [CrossRef] [PubMed].