Numéro
J. Phys. I France
Volume 4, Numéro 1, January 1994
Page(s) 47 - 75
DOI https://doi.org/10.1051/jp1:1994120
References of J. Phys. I France 4 47-75
  1. Lipowsky R., Phys. Scr. T 29 (1989) 259; Forgacs G., Lipowsky R., and Nieuwenhuizen Th.M., Phase Transitions and Critical Phenomena, C. Domb and J. Lebowitz Eds. (Academic, London, 1991) Vol. 14.
  2. A review of wetting transitions in two and three dimensions is provided by Fisher M.E., J. Chem. Soc. Faraday Trans. 2 82 (1986) 1569 [CrossRef].
  3. Lipowsky R., Nature (London) 349 (1991) 475; Physica A 194 (1993) 114.
  4. Helfrich W. and Mutz M., Random Fluctuations and Growth, H.E. Stanley and N. Ostrowsky Eds. (Kluwer, Dordrecht, 1988); Mutz M. and Helfrich W., Phys. Rev. Lett 62 (1989) 2881 [CrossRef] [PubMed].
  5. Fisher M.E. and Gelfand M., J. Stat. Phys. 53 (1988) 175 [CrossRef] [MathSciNet].
  6. Cook-R$\ddot\textrm{o}$der J. and Lipowsky R., Europhys. Lett. 18 (1992) 433 [CrossRef].
  7. Lipowsky R. and Zielinska B., Phys. Rev. Lett. 62 (1989) 1572 [CrossRef] [PubMed].
  8. Netz R.R. and Lipowsky R., Phys. Rev. E 47 (1993) 3039 [CrossRef].
  9. Milner S.T. and Roux D., J. Phys. I France 2 (1992) 1741.
  10. Helfrich W., J. Phys. Ii France 3 (1993) 385 [EDP Sciences] [CrossRef].
  11. Burkhardt T.W. and Schlottmann P., J. Phys. A 26 (1993) L501 [CrossRef]. For a lucid discussion of the methods used (and its limitations) see Burkhardt T.W. and Schlottmann P., Z. Phys. B 54 (1984) 151 [CrossRef].
  12. Hiergeist C., L$\ddot\textrm{a}$ssig M. and Lipowsky R. (to be published).
  13. Lipowsky R. and Nieuwenhuizen T.M., J. Phys. A 21 (1988) L89 [CrossRef].
  14. McGuire J.B. and Hurst C.A., J. Math. Phys. 13 (1972) 1595 [CrossRef].
  15. Balian R. and Toulouse G., Ann. Phys. 83 (1974) 28.
  16. Lipowsky R., Europhys. Lett. 15 (1991) 703 [MathSciNet].
  17. Lipowsky R., Grotehans S. and Schmidt G.J.O., Mat. Res. Soc. Symp. Proc. 237 (1992) 11.
  18. Note that Eq.(4.8) in [5] should read as ${m}_\textrm{c}(V_{o}) = 2({\psi}_{3}(b_{3}) - 2)$.
  19. W.H. Press, B.P. Flannery, S.A. Teukolsky and W.T. Vetterling Eds., Numerical Recipes: The Art of Scientific Computing, 1989, p. 523.
  20. The free energy of the lowest scattering state, $f_\textrm{o}$, for an infinite system can be calculated from (61) using $N_{o} = 1 + 4e^{-({\Delta}z})^{2/2} + 4e^{-({\Delta}z})^{2}$
  21. Netz R.R. and Lipowsky R., to be published.
  22. Chui S.T. and Weeks J.D., Phys. Rev. B 23 (1981) 2438 [CrossRef].