La fonctionnalité Article cité par… liste les citations d'un article. Ces citations proviennent de la base de données des articles de EDP Sciences, ainsi que des bases de données d'autres éditeurs participant au programme CrossRef Cited-by Linking Program . Vous pouvez définir une alerte courriel pour être prévenu de la parution d'un nouvel article citant " cet article (voir sur la page du résumé de l'article le menu à droite).
Article cité :
Herbert Spohn
J. Phys. I France, 3 1 (1993) 69-81
Citations de cet article :
154 articles | Pages :
Continuous differentiability of a weak solution to very singular elliptic equations involving anisotropic diffusivity
Shuntaro Tsubouchi Advances in Calculus of Variations 17 (3) 881 (2024) https://doi.org/10.1515/acv-2022-0072
Hybrid Approach for the Time-Dependent Fractional Advection–Diffusion Equation Using Conformable Derivatives
André Soledade, Antônio José da Silva Neto and Davidson Martins Moreira Pure and Applied Geophysics 181 (11) 3279 (2024) https://doi.org/10.1007/s00024-024-03580-3
The fourth-order total variation flow in $ \mathbb{R}^n $
Yoshikazu Giga, Hirotoshi Kuroda and Michał Łasica Mathematics in Engineering 5 (6) 1 (2023) https://doi.org/10.3934/mine.2023091
An Introduction to Anomalous Diffusion and Relaxation
Luiz Roberto Evangelista and Ervin Kaminski Lenzi PoliTO Springer Series, An Introduction to Anomalous Diffusion and Relaxation 109 (2023) https://doi.org/10.1007/978-3-031-18150-4_3
An Introduction to Anomalous Diffusion and Relaxation
Luiz Roberto Evangelista and Ervin Kaminski Lenzi PoliTO Springer Series, An Introduction to Anomalous Diffusion and Relaxation 71 (2023) https://doi.org/10.1007/978-3-031-18150-4_2
An Approach for the Atmospheric Pollutant Dispersion Equation Considering Anomalous Diffusion in Strongly Unstable Conditions
Davidson Martins Moreira Pure and Applied Geophysics 179 (4) 1433 (2022) https://doi.org/10.1007/s00024-022-02986-1
Crystalline surface diffusion flow for graph-like curves
Mi-Ho Giga and Yoshikazu Giga Discrete and Continuous Dynamical Systems (2022) https://doi.org/10.3934/dcds.2022160
Motion by crystalline-like mean curvature: A survey
Yoshikazu Giga and Norbert Požár Bulletin of Mathematical Sciences 12 (02) (2022) https://doi.org/10.1142/S1664360722300043
Smooth, cusped and sharp shock waves in a one-dimensional model of a microfluidic drop ensemble
J.I. Ramos International Journal of Numerical Methods for Heat & Fluid Flow 32 (1) 150 (2022) https://doi.org/10.1108/HFF-11-2020-0688
Space–time fractional diffusion equations in d-dimensions
E. K. Lenzi and L. R. Evangelista Journal of Mathematical Physics 62 (8) (2021) https://doi.org/10.1063/5.0051449
Stationary solution and
H
theorem for a generalized Fokker-Planck equation
Max Jauregui, Anna L. F. Lucchi, Jean H. Y. Passos and Renio S. Mendes Physical Review E 104 (3) (2021) https://doi.org/10.1103/PhysRevE.104.034130
Analysis of a continuum theory for broken bond crystal surface models with evaporation and deposition effects
Yuan Gao, Jian-Guo Liu, Jianfeng Lu and Jeremy L Marzuola Nonlinearity 33 (8) 3816 (2020) https://doi.org/10.1088/1361-6544/ab853d
Stochastic Representation and Monte Carlo Simulation for Multiterm Time-Fractional Diffusion Equation
Longjin Lv and Luna Wang Advances in Mathematical Physics 2020 1 (2020) https://doi.org/10.1155/2020/1315426
Some nonlinear extensions for the schrödinger equation
E.K. Lenzi, A.S.M. de Castro and R.S. Mendes Chinese Journal of Physics 66 74 (2020) https://doi.org/10.1016/j.cjph.2020.04.019
Analysis and simulation of a PDE model for surface relaxation
H. M. Versieux Computational and Applied Mathematics 39 (2) (2020) https://doi.org/10.1007/s40314-020-1073-4
Anomalous diffusion behavior in parliamentary presence
Denner S. Vieira, Jesus M. E. Riveros, Max Jauregui and Renio S. Mendes Physical Review E 99 (4) (2019) https://doi.org/10.1103/PhysRevE.99.042141
Numerical computations of split Bregman method for fourth order total variation flow
Yoshikazu Giga and Yuki Ueda Journal of Computational Physics 109114 (2019) https://doi.org/10.1016/j.jcp.2019.109114
Asymmetry in crystal facet dynamics of homoepitaxy by a continuum model
Jian-Guo Liu, Jianfeng Lu, Dionisios Margetis and Jeremy L. Marzuola Physica D: Nonlinear Phenomena 393 54 (2019) https://doi.org/10.1016/j.physd.2019.01.004
A C0 interior penalty discontinuous Galerkin method for fourth‐order total variation flow. I: Derivation of the method and numerical results
Chandi Bhandari, Ronald H.W. Hoppe and Rahul Kumar Numerical Methods for Partial Differential Equations 35 (4) 1458 (2019) https://doi.org/10.1002/num.22359
Nonlinear Fokker–Planck equations, H – theorem, and entropies
M.A.F. dos Santos, M.K. Lenzi and E.K. Lenzi Chinese Journal of Physics 55 (4) 1294 (2017) https://doi.org/10.1016/j.cjph.2017.07.003
Random Walks Associated with Nonlinear Fokker–Planck Equations
Renio dos Santos Mendes, Ervin Lenzi, Luis Malacarne, Sergio Picoli and Max Jauregui Entropy 19 (4) 155 (2017) https://doi.org/10.3390/e19040155
Intermittent Motion, Nonlinear Diffusion Equation and Tsallis Formalism
Ervin Lenzi, Luciano Da Silva, Marcelo Lenzi, Maike Dos Santos, Haroldo Ribeiro and Luiz Evangelista Entropy 19 (1) 42 (2017) https://doi.org/10.3390/e19010042
Relaxation of charge in monolayer graphene: Fast nonlinear diffusion versus Coulomb effects
Eugene B. Kolomeisky and Joseph P. Straley Physical Review B 95 (4) (2017) https://doi.org/10.1103/PhysRevB.95.045415
Nonlinear inhomogeneous Fokker-Planck equations: Entropy and free-energy time evolution
Gabriele Sicuro, Peter Rapčan and Constantino Tsallis Physical Review E 94 (6) (2016) https://doi.org/10.1103/PhysRevE.94.062117
On the connection between linear combination of entropies and linear combination of extremizing distributions
Gabriele Sicuro, Debarshee Bagchi and Constantino Tsallis Physics Letters A (2016) https://doi.org/10.1016/j.physleta.2016.03.033
Power-law Fokker–Planck equation of unimolecular reaction based on the approximation to master equation
Yanjun Zhou and Cangtao Yin Physica A: Statistical Mechanics and its Applications 463 445 (2016) https://doi.org/10.1016/j.physa.2016.07.060
Families of Fokker-Planck equations and the associated entropic form for a distinct steady-state probability distribution with a known external force field
Somayeh Asgarani Physical Review E 91 (2) (2015) https://doi.org/10.1103/PhysRevE.91.022104
Singular diffusion in a confined sandpile
R. S. Pires, A. A. Moreira, H. A. Carmona and J. S. Andrade EPL (Europhysics Letters) 109 (1) 14007 (2015) https://doi.org/10.1209/0295-5075/109/14007
Nonlinear Ehrenfest's urn model
G. A. Casas, F. D. Nobre and E. M. F. Curado Physical Review E 91 (4) (2015) https://doi.org/10.1103/PhysRevE.91.042139
Role of chemical potential in relaxation of faceted crystal structure
Joshua P. Schneider, Kanna Nakamura and Dionisios Margetis Physical Review E 89 (6) (2014) https://doi.org/10.1103/PhysRevE.89.062408
Evolution of (001) and (111) facets for selective epitaxial growth inside submicron trenches
S. Jiang, C. Merckling, W. Guo, et al. Journal of Applied Physics 115 (2) (2014) https://doi.org/10.1063/1.4861416
Discrete and Continuum Relaxation Dynamics of Faceted Crystal Surface in Evaporation Models
Kanna Nakamura and Dionisios Margetis Multiscale Modeling & Simulation 11 (1) 244 (2013) https://doi.org/10.1137/110849687
Well posedness of sudden directional diffusion equations
Piotr Bogusław Mucha and Piotr Rybka Mathematical Methods in the Applied Sciences 36 (17) 2359 (2013) https://doi.org/10.1002/mma.2759
Nonlinear Partial Differential Equations
Robert V. Kohn Abel Symposia, Nonlinear Partial Differential Equations 7 207 (2012) https://doi.org/10.1007/978-3-642-25361-4_11
The physics of 2D microfluidic droplet ensembles
Tsevi Beatus, Roy H. Bar-Ziv and Tsvi Tlusty Physics Reports 516 (3) 103 (2012) https://doi.org/10.1016/j.physrep.2012.02.003
Characterization of subdifferentials of a singular convex functional in Sobolev spaces of order minus one
Yohei Kashima Journal of Functional Analysis 262 (6) 2833 (2012) https://doi.org/10.1016/j.jfa.2012.01.005
Fractional Fokker-Planck Equation with Space and Time Dependent Drift and Diffusion
Longjin Lv, Weiyuan Qiu and Fuyao Ren Journal of Statistical Physics 149 (4) 619 (2012) https://doi.org/10.1007/s10955-012-0618-3
Nonlinear diffusion effects on biological population spatial patterns
Eduardo H. Colombo and Celia Anteneodo Physical Review E 86 (3) (2012) https://doi.org/10.1103/PhysRevE.86.036215
Entropy production and nonlinear Fokker-Planck equations
G. A. Casas, F. D. Nobre and E. M. F. Curado Physical Review E 86 (6) (2012) https://doi.org/10.1103/PhysRevE.86.061136
A Note on a Model System with Sudden Directional Diffusion
Piotr Bogusław Mucha and Piotr Rybka Journal of Statistical Physics 146 (5) 975 (2012) https://doi.org/10.1007/s10955-012-0446-5
Classes of N-Dimensional Nonlinear Fokker-Planck Equations Associated to Tsallis Entropy
Mauricio S. Ribeiro, Fernando D. Nobre and Evaldo M. F. Curado Entropy 13 (11) 1928 (2011) https://doi.org/10.3390/e13111928
From crystal steps to continuum laws: Behavior near large facets in one dimension
Dionisios Margetis and Kanna Nakamura Physica D: Nonlinear Phenomena 240 (13) 1100 (2011) https://doi.org/10.1016/j.physd.2011.03.007
The evolution of a crystal surface: Analysis of a one-dimensional step train connecting two facets in the ADL regime
Hala Al Hajj Shehadeh, Robert V. Kohn and Jonathan Weare Physica D: Nonlinear Phenomena 240 (21) 1771 (2011) https://doi.org/10.1016/j.physd.2011.07.016
Oscillatory variation of anomalous diffusion in pendulum systems
G SAKTHIVEL and S RAJASEKAR Pramana 76 (3) 373 (2011) https://doi.org/10.1007/s12043-011-0050-2
Numerical Analysis of a Steepest-Descent PDE Model for Surface Relaxation below the Roughening Temperature
R. V. Kohn and H. M. Versieux SIAM Journal on Numerical Analysis 48 (5) 1781 (2010) https://doi.org/10.1137/090750378
Electromigration in Macroscopic Relaxation of Stepped Surfaces
John Quah and Dionisios Margetis Multiscale Modeling & Simulation 8 (2) 667 (2010) https://doi.org/10.1137/090760635
Very singular diffusion equations: second and fourth order problems
Mi-Ho Giga and Yoshikazu Giga Japan Journal of Industrial and Applied Mathematics 27 (3) 323 (2010) https://doi.org/10.1007/s13160-010-0020-y
Thermostatistics of Overdamped Motion of Interacting Particles
J. S. Andrade, G. F. T. da Silva, A. A. Moreira, F. D. Nobre and E. M. F. Curado Physical Review Letters 105 (26) (2010) https://doi.org/10.1103/PhysRevLett.105.260601
Burgers Shock Waves and Sound in a 2D Microfluidic Droplets Ensemble
Tsevi Beatus, Tsvi Tlusty and Roy Bar-Ziv Physical Review Letters 103 (11) (2009) https://doi.org/10.1103/PhysRevLett.103.114502
The role of self-similarity in singularities of partial differential equations
Jens Eggers and Marco A Fontelos Nonlinearity 22 (1) R1 (2009) https://doi.org/10.1088/0951-7715/22/1/R01
On the derivation of fractional diffusion equation with an absorbent term and a linear external force
M.A. Zahran Applied Mathematical Modelling 33 (7) 3088 (2009) https://doi.org/10.1016/j.apm.2008.10.013
Fokker-Planck equation in a wedge domain: Anomalous diffusion and survival probability
E. K. Lenzi, L. R. Evangelista, M. K. Lenzi and L. R. da Silva Physical Review E 80 (2) (2009) https://doi.org/10.1103/PhysRevE.80.021131
Homogenization of reconstructed crystal surfaces: Fick’s law of diffusion
Dionisios Margetis Physical Review E 79 (5) (2009) https://doi.org/10.1103/PhysRevE.79.052601
Kinetic composition locking on faceted alloy surfaces
Ashwin Ramasubramaniam and Vivek B. Shenoy Acta Materialia 57 (1) 196 (2009) https://doi.org/10.1016/j.actamat.2008.08.063
Kinetic Hierarchies and Macroscopic Limits for Crystalline Steps in $1+1$ Dimensions
Dionisios Margetis and Athanasios E. Tzavaras Multiscale Modeling & Simulation 7 (3) 1428 (2009) https://doi.org/10.1137/080726495
Solutions for a fractional nonlinear diffusion equation with external force and absorbent term
E K Lenzi, M K Lenzi, L R Evangelista, L C Malacarne and R S Mendes Journal of Statistical Mechanics: Theory and Experiment 2009 (02) P02048 (2009) https://doi.org/10.1088/1742-5468/2009/02/P02048
Anomalous Diffusion Mediated by Atom Deposition into a Porous Substrate
Pascal Brault, Christophe Josserand, Jean-Marc Bauchire, et al. Physical Review Letters 102 (4) (2009) https://doi.org/10.1103/PhysRevLett.102.045901
Dynamics of normal and anomalous diffusion in nonlinear Fokker-Planck equations
V. Schwämmle, E. M.F. Curado and F. D. Nobre The European Physical Journal B 70 (1) 107 (2009) https://doi.org/10.1140/epjb/e2009-00172-9
Macroscopic view of crystal-step transparency
John Quah, Jerrod Young and Dionisios Margetis Physical Review E 78 (4) (2008) https://doi.org/10.1103/PhysRevE.78.042602
Exact solutions for a diffusion equation with a nonlinear external force
R.S. Zola, M.K. Lenzi, L.R. Evangelista, et al. Physics Letters A 372 (14) 2359 (2008) https://doi.org/10.1016/j.physleta.2007.12.007
Facet evolution on supported nanostructures: Effect of finite height
Pak-Wing Fok, Rodolfo R. Rosales and Dionisios Margetis Physical Review B 78 (23) (2008) https://doi.org/10.1103/PhysRevB.78.235401
Sintering behavior of two roughened crystals just after contact
Robert S. Farr and Martin J. Izzard Physical Review E 77 (4) (2008) https://doi.org/10.1103/PhysRevE.77.041608
Solutions of fractional nonlinear diffusion equation and first passage time: Influence of initial condition and diffusion coefficient
Jun Wang, Wen-Jun Zhang, Jin-Rong Liang, Pan Zhang and Fu-Yao Ren Physica A: Statistical Mechanics and its Applications 387 (18) 4547 (2008) https://doi.org/10.1016/j.physa.2008.04.017
Signals of non-extensive statistical mechanics in high energy nuclear collisions
W.M. Alberico, P. Czerski, A. Lavagno, M. Nardi and V. Somá Physica A: Statistical Mechanics and its Applications 387 (2-3) 467 (2008) https://doi.org/10.1016/j.physa.2007.09.005
Solutions for multidimensional fractional anomalous diffusion equations
Long-Jin Lv, Jian-Bin Xiao, Fu-Yao Ren and Lei Gao Journal of Mathematical Physics 49 (7) (2008) https://doi.org/10.1063/1.2951898
Solutions for a time-fractional diffusion equation with absorption: influence of different diffusion coefficients and external forces
Wen-Bin Chen, Jun Wang, Wei-Yuan Qiu and Fu-Yao Ren Journal of Physics A: Mathematical and Theoretical 41 (4) 045003 (2008) https://doi.org/10.1088/1751-8113/41/4/045003
Fractional nonlinear diffusion equation and first passage time
Jun Wang, Wen-Jun Zhang, Jin-Rong Liang, Jian-Bin Xiao and Fu-Yao Ren Physica A: Statistical Mechanics and its Applications 387 (4) 764 (2008) https://doi.org/10.1016/j.physa.2007.10.021
Nonlinear mean field Fokker-Planck equations. Application to the chemotaxis of biological populations
P. H. Chavanis The European Physical Journal B 62 (2) 179 (2008) https://doi.org/10.1140/epjb/e2008-00142-9
Anisotropic diffusion in continuum relaxation of stepped crystal surfaces
John Quah and Dionisios Margetis Journal of Physics A: Mathematical and Theoretical 41 (23) 235004 (2008) https://doi.org/10.1088/1751-8113/41/23/235004
Fractional diffusion equation with an absorbent term and a linear external force: Exact solution
A. Schot, M.K. Lenzi, L.R. Evangelista, et al. Physics Letters A 366 (4-5) 346 (2007) https://doi.org/10.1016/j.physleta.2007.02.056
Unified continuum approach to crystal surface morphological relaxation
Dionisios Margetis Physical Review B 76 (19) (2007) https://doi.org/10.1103/PhysRevB.76.193403
Morphological evolution of edge-hillocks on single-crystal films having anisotropic drift-diffusion under the capillary and electromigration forces
Tarik Omer Ogurtani, Aytac Celik and Ersin Emre Oren Thin Solid Films 515 (5) 2974 (2007) https://doi.org/10.1016/j.tsf.2006.08.020
Consequences of theHtheorem from nonlinear Fokker-Planck equations
Veit Schwämmle, Fernando D. Nobre and Evaldo M. F. Curado Physical Review E 76 (4) (2007) https://doi.org/10.1103/PhysRevE.76.041123
Exact solutions for nonlinear fractional anomalous diffusion equations
Jin-Rong Liang, Fu-Yao Ren, Wei-Yuan Qiu and Jian-Bin Xiao Physica A: Statistical Mechanics and its Applications 385 (1) 80 (2007) https://doi.org/10.1016/j.physa.2007.06.016
General solution of the diffusion equation with a nonlocal diffusive term and a linear force term
L. C. Malacarne, R. S. Mendes, E. K. Lenzi and M. K. Lenzi Physical Review E 74 (4) (2006) https://doi.org/10.1103/PhysRevE.74.042101
Continuum Theory of Nanostructure Decay Via a Microscale Condition
Dionisios Margetis, Pak-Wing Fok, Michael J. Aziz and Howard A. Stone Physical Review Letters 97 (9) (2006) https://doi.org/10.1103/PhysRevLett.97.096102
Continuum Relaxation of Interacting Steps on Crystal Surfaces in $2+1$ Dimensions
Dionisios Margetis and Robert V. Kohn Multiscale Modeling & Simulation 5 (3) 729 (2006) https://doi.org/10.1137/06065297X
Disordered flat phase of a crystal surface: Critical and dynamic properties
J. Klärs and W. Selke Physical Review B 74 (7) (2006) https://doi.org/10.1103/PhysRevB.74.073405
Handbook of Materials Modeling
Howard A. Stone and Dionisios Margetis Handbook of Materials Modeling 1389 (2005) https://doi.org/10.1007/978-1-4020-3286-8_69
Continuum approach to self-similarity and scaling in morphological relaxation of a crystal with a facet
Dionisios Margetis, Michael J. Aziz and Howard A. Stone Physical Review B 71 (16) (2005) https://doi.org/10.1103/PhysRevB.71.165432
Difusão anômala e equações generalizadas de difusão
Isabel Tamara Pedron and Renio dos Santos Mendes Revista Brasileira de Ensino de Física 27 (2) 251 (2005) https://doi.org/10.1590/S1806-11172005000200011
A spectral method for the nonconserved surface evolution of nanocrystalline gratings below the roughening transition
A. Ramasubramaniam and V. B. Shenoy Journal of Applied Physics 97 (11) (2005) https://doi.org/10.1063/1.1897837
Logarithmic diffusion and porous media equations: A unified description
I. T. Pedron, R. S. Mendes, T. J. Buratta, L. C. Malacarne and E. K. Lenzi Physical Review E 72 (3) (2005) https://doi.org/10.1103/PhysRevE.72.031106
Nonlinear diffusion equation, Tsallis formalism and exact solutions
P. C. Assis, L. R. da Silva, E. K. Lenzi, L. C. Malacarne and R. S. Mendes Journal of Mathematical Physics 46 (12) (2005) https://doi.org/10.1063/1.2142838
Transition State Theory Rate in Nonlinear Environment: the Under-damping Case
Jiang-Lin Zhao and Jing-Dong Bao Communications in Theoretical Physics 44 (4) 752 (2005) https://doi.org/10.1088/6102/44/4/752
Non-extensive random walks
C. Anteneodo Physica A: Statistical Mechanics and its Applications 358 (2-4) 289 (2005) https://doi.org/10.1016/j.physa.2005.06.052
Numerical study of the stability of (111) and (331) microfacets on Au, Pt, and Ir (110) surfaces
U. T. Ndongmouo, F. Hontinfinde and R. Ferrando Physical Review B 72 (11) (2005) https://doi.org/10.1103/PhysRevB.72.115412
Nonlinear fractional diffusion equation: Exact results
E. K. Lenzi, R. S. Mendes, Kwok Sau Fa, et al. Journal of Mathematical Physics 46 (8) (2005) https://doi.org/10.1063/1.1993527
Grooving of a grain boundary by evaporation–condensation below the roughening transition
H. A. Stone, M. J. Aziz and D. Margetis Journal of Applied Physics 97 (11) (2005) https://doi.org/10.1063/1.1922583
Solutions for a fractional nonlinear diffusion equation: Spatial time dependent diffusion coefficient and external forces
E. K. Lenzi, R. S. Mendes, Kwok Sau Fa, L. R. da Silva and L. S. Lucena Journal of Mathematical Physics 45 (9) 3444 (2004) https://doi.org/10.1063/1.1768619
Isometric graphing and multidimensional scaling for reaction-diffusion modeling on regular and fractal surfaces with spatiotemporal pattern recognition
Jainy Kuriakose, Anandamohan Ghosh, V. Ravi Kumar and B. D. Kulkarni The Journal of Chemical Physics 120 (11) 5432 (2004) https://doi.org/10.1063/1.1647046
A procedure for obtaining general nonlinear Fokker–Planck equations
Fernando D. Nobre, Evaldo M.F. Curado and G. Rowlands Physica A: Statistical Mechanics and its Applications 334 (1-2) 109 (2004) https://doi.org/10.1016/j.physa.2003.11.023
Influence of Step-Edge Barriers on the Morphological Relaxation of Nanoscale Ripples on Crystal Surfaces
V. B. Shenoy, A. Ramasubramaniam, H. Ramanarayan, et al. Physical Review Letters 92 (25) (2004) https://doi.org/10.1103/PhysRevLett.92.256101
Stochastic feedback, nonlinear families of Markov processes, and nonlinear Fokker–Planck equations
T.D. Frank Physica A: Statistical Mechanics and its Applications 331 (3-4) 391 (2004) https://doi.org/10.1016/j.physa.2003.09.056
Surface chemical potential and current-density maps during annealing
M. V. Ramana Murty Physical Review B 70 (12) (2004) https://doi.org/10.1103/PhysRevB.70.125424
Continuum description of profile scaling in nanostructure decay
Dionisios Margetis, Michael Aziz and Howard Stone Physical Review B 69 (4) 041404 (2004) https://doi.org/10.1103/PhysRevB.69.041404
Relaxation kinetics of nano-ripples on Cu(001) surface
Wai Lun Chan, Ashwin Ramasubramaniam, Vivek B. Shenoy and Eric Chason Physical Review B 70 (24) (2004) https://doi.org/10.1103/PhysRevB.70.245403
A variational approach to nonlinear dynamics of nanoscale surface modulations
V.B. Shenoy, A. Ramasubramaniam and L.B. Freund Surface Science 529 (3) 365 (2003) https://doi.org/10.1016/S0039-6028(03)00276-0
Anomalous diffusion, nonlinear fractional Fokker–Planck equation and solutions
E.K. Lenzi, L.C. Malacarne, R.S. Mendes and I.T. Pedron Physica A: Statistical Mechanics and its Applications 319 245 (2003) https://doi.org/10.1016/S0378-4371(02)01495-4
Crossover in diffusion equation: Anomalous and normal behaviors
E. Lenzi, R. Mendes and C. Tsallis Physical Review E 67 (3) 031104 (2003) https://doi.org/10.1103/PhysRevE.67.031104
Pages :
1 à 100 sur 154 articles