Article cité par

La fonctionnalité Article cité par… liste les citations d'un article. Ces citations proviennent de la base de données des articles de EDP Sciences, ainsi que des bases de données d'autres éditeurs participant au programme CrossRef Cited-by Linking Program. Vous pouvez définir une alerte courriel pour être prévenu de la parution d'un nouvel article citant " cet article (voir sur la page du résumé de l'article le menu à droite).

Article cité :

Introduction to dynamical mean-field theory of randomly connected neural networks with bidirectionally correlated couplings

Wenxuan Zou and Haiping Huang
SciPost Physics Lecture Notes (2024)
https://doi.org/10.21468/SciPostPhysLectNotes.79

Generalized Lotka-Volterra Equations with Random, Nonreciprocal Interactions: The Typical Number of Equilibria

Valentina Ros, Felix Roy, Giulio Biroli, Guy Bunin and Ari M. Turner
Physical Review Letters 130 (25) (2023)
https://doi.org/10.1103/PhysRevLett.130.257401

Linear response in neuronal networks: From neurons dynamics to collective response

Bruno Cessac
Chaos: An Interdisciplinary Journal of Nonlinear Science 29 (10) (2019)
https://doi.org/10.1063/1.5111803

Stationary-State Statistics of a Binary Neural Network Model with Quenched Disorder

Diego Fasoli and Stefano Panzeri
Entropy 21 (7) 630 (2019)
https://doi.org/10.3390/e21070630

Asymptotic description of stochastic neural networks. I. Existence of a large deviation principle

Olivier Faugeras and James Maclaurin
Comptes Rendus. Mathématique 352 (10) 841 (2014)
https://doi.org/10.1016/j.crma.2014.08.018

Effects of Cellular Homeostatic Intrinsic Plasticity on Dynamical and Computational Properties of Biological Recurrent Neural Networks

Jérémie Naudé, Bruno Cessac, Hugues Berry and Bruno Delord
The Journal of Neuroscience 33 (38) 15032 (2013)
https://doi.org/10.1523/JNEUROSCI.0870-13.2013

Texture evolution and fcc/hcp transformation in Fe–Mn–Si–Cr alloys by tensile deformation

Eui Pyo Kwon, Shun Fujieda, Kozo Shinoda and Shigeru Suzuki
Materials Science and Engineering: A 527 (24-25) 6524 (2010)
https://doi.org/10.1016/j.msea.2010.06.041

A Mathematical Analysis of the Effects of Hebbian Learning Rules on the Dynamics and Structure of Discrete-Time Random Recurrent Neural Networks

Benoît Siri, Hugues Berry, Bruno Cessac, Bruno Delord and Mathias Quoy
Neural Computation 20 (12) 2937 (2008)
https://doi.org/10.1162/neco.2008.05-07-530

Transmitting a signal by amplitude modulation in a chaotic network

B. Cessac and J. A. Sepulchre
Chaos: An Interdisciplinary Journal of Nonlinear Science 16 (1) (2006)
https://doi.org/10.1063/1.2126813

A random asymmetric temporal model of multi-agent interactions: dynamical analysis

C.J. Emmanouilides, S. Kasderidis and J.G. Taylor
Physica D: Nonlinear Phenomena 181 (1-2) 102 (2003)
https://doi.org/10.1016/S0167-2789(03)00094-0

Mean-field Theory and Synchronization in Random Recurrent Neural Networks

Emmanuel Dauce, Olivier Moynot, Olivier Pinaud and Manuel Samuelides
Neural Processing Letters 14 (2) 115 (2001)
https://doi.org/10.1023/A:1012435207437

Recurrent Neural Networks

Judy Dayhoff, Peter Palmadesso and Fred Richards
International Series on Computational Intelligence, Recurrent Neural Networks 19994575 (1999)
https://doi.org/10.1201/9781420049176.ch7

Self-organization and dynamics reduction in recurrent networks: stimulus presentation and learning

Emmanuel Dauce, Mathias Quoy, Bruno Cessac, Bernard Doyon and Manuel Samuelides
Neural Networks 11 (3) 521 (1998)
https://doi.org/10.1016/S0893-6080(97)00131-7