La fonctionnalité Article cité par… liste les citations d'un article. Ces citations proviennent de la base de données des articles de EDP Sciences, ainsi que des bases de données d'autres éditeurs participant au programme CrossRef Cited-by Linking Program . Vous pouvez définir une alerte courriel pour être prévenu de la parution d'un nouvel article citant " cet article (voir sur la page du résumé de l'article le menu à droite).
Article cité :
B. Cessac
J. Phys. I France, 5 3 (1995) 409-432
Citations de cet article :
35 articles
Introduction to dynamical mean-field theory of randomly connected neural networks with bidirectionally correlated couplings
Wenxuan Zou and Haiping Huang SciPost Physics Lecture Notes (2024) https://doi.org/10.21468/SciPostPhysLectNotes.79
Spectrum of non-Hermitian deep-Hebbian neural networks
Zijian Jiang, Ziming Chen, Tianqi Hou and Haiping Huang Physical Review Research 5 (1) (2023) https://doi.org/10.1103/PhysRevResearch.5.013090
Generalized Lotka-Volterra Equations with Random, Nonreciprocal Interactions: The Typical Number of Equilibria
Valentina Ros, Felix Roy, Giulio Biroli, Guy Bunin and Ari M. Turner Physical Review Letters 130 (25) (2023) https://doi.org/10.1103/PhysRevLett.130.257401
Theory of Gating in Recurrent Neural Networks
Kamesh Krishnamurthy, Tankut Can and David J. Schwab Physical Review X 12 (1) (2022) https://doi.org/10.1103/PhysRevX.12.011011
Space of Functions Computed by Deep-Layered Machines
Alexander Mozeika, Bo Li and David Saad Physical Review Letters 125 (16) (2020) https://doi.org/10.1103/PhysRevLett.125.168301
Linear response in neuronal networks: From neurons dynamics to collective response
Bruno Cessac Chaos: An Interdisciplinary Journal of Nonlinear Science 29 (10) (2019) https://doi.org/10.1063/1.5111803
Stationary-State Statistics of a Binary Neural Network Model with Quenched Disorder
Diego Fasoli and Stefano Panzeri Entropy 21 (7) 630 (2019) https://doi.org/10.3390/e21070630
Optimized brute-force algorithms for the bifurcation analysis of a binary neural network model
Diego Fasoli and Stefano Panzeri Physical Review E 99 (1) (2019) https://doi.org/10.1103/PhysRevE.99.012316
P. Tewarie, A. Daffertshofer and B.W. van Dijk (2017) https://doi.org/10.1101/196113
Characterization of Co-Ni Based Ferromagnetic Shape Memory Alloy
Ji-Won Han and Sung Bum Park Journal of the Korean Society of Safety 30 (4) 8 (2015) https://doi.org/10.14346/JKOSOS.2015.30.4.8
Asymptotic description of stochastic neural networks. I. Existence of a large deviation principle
Olivier Faugeras and James Maclaurin Comptes Rendus. Mathématique 352 (10) 841 (2014) https://doi.org/10.1016/j.crma.2014.08.018
Effects of Cellular Homeostatic Intrinsic Plasticity on Dynamical and Computational Properties of Biological Recurrent Neural Networks
Jérémie Naudé, Bruno Cessac, Hugues Berry and Bruno Delord The Journal of Neuroscience 33 (38) 15032 (2013) https://doi.org/10.1523/JNEUROSCI.0870-13.2013
Mean-field theory of echo state networks
Marc Massar and Serge Massar Physical Review E 87 (4) (2013) https://doi.org/10.1103/PhysRevE.87.042809
Topological and Dynamical Complexity of Random Neural Networks
Gilles Wainrib and Jonathan Touboul Physical Review Letters 110 (11) (2013) https://doi.org/10.1103/PhysRevLett.110.118101
Beyond dynamical mean-field theory of neural networks
Massimiliano Muratori and Bruno Cessac BMC Neuroscience 14 (S1) (2013) https://doi.org/10.1186/1471-2202-14-S1-P60
Texture evolution and fcc/hcp transformation in Fe–Mn–Si–Cr alloys by tensile deformation
Eui Pyo Kwon, Shun Fujieda, Kozo Shinoda and Shigeru Suzuki Materials Science and Engineering: A 527 (24-25) 6524 (2010) https://doi.org/10.1016/j.msea.2010.06.041
A VIEW OF NEURAL NETWORKS AS DYNAMICAL SYSTEMS
B. CESSAC International Journal of Bifurcation and Chaos 20 (06) 1585 (2010) https://doi.org/10.1142/S0218127410026721
A Mathematical Analysis of the Effects of Hebbian Learning Rules on the Dynamics and Structure of Discrete-Time Random Recurrent Neural Networks
Benoît Siri, Hugues Berry, Bruno Cessac, Bruno Delord and Mathias Quoy Neural Computation 20 (12) 2937 (2008) https://doi.org/10.1162/neco.2008.05-07-530
Learning and control with large dynamic neural networks
E. Daucé The European Physical Journal Special Topics 142 (1) 123 (2007) https://doi.org/10.1140/epjst/e2007-00060-8
A discrete time neural network model with spiking neurons
B. Cessac Journal of Mathematical Biology 56 (3) 311 (2007) https://doi.org/10.1007/s00285-007-0117-3
Random recurrent neural networks dynamics
M. Samuelides and B. Cessac The European Physical Journal Special Topics 142 (1) 89 (2007) https://doi.org/10.1140/epjst/e2007-00059-1
From neuron to neural networks dynamics
B. Cessac and M. Samuelides The European Physical Journal Special Topics 142 (1) 7 (2007) https://doi.org/10.1140/epjst/e2007-00058-2
Structural stability and hyperbolicity violation in high-dimensional dynamical systems
D J Albers and J C Sprott Nonlinearity 19 (8) 1801 (2006) https://doi.org/10.1088/0951-7715/19/8/005
Transmitting a signal by amplitude modulation in a chaotic network
B. Cessac and J. A. Sepulchre Chaos: An Interdisciplinary Journal of Nonlinear Science 16 (1) (2006) https://doi.org/10.1063/1.2126813
Stable resonances and signal propagation in a chaotic network of coupled units
B. Cessac and J. A. Sepulchre Physical Review E 70 (5) (2004) https://doi.org/10.1103/PhysRevE.70.056111
Short term memory in recurrent networks of spiking neurons
Emmanuel Daucé Natural Computing 3 (2) 135 (2004) https://doi.org/10.1023/B:NACO.0000027761.71892.14
A random asymmetric temporal model of multi-agent interactions: dynamical analysis
C.J. Emmanouilides, S. Kasderidis and J.G. Taylor Physica D: Nonlinear Phenomena 181 (1-2) 102 (2003) https://doi.org/10.1016/S0167-2789(03)00094-0
Computational capacity of time-recurrent networks
S A Vakulenko Journal of Physics A: Mathematical and General 35 (11) 2539 (2002) https://doi.org/10.1088/0305-4470/35/11/302
Mean-field Theory and Synchronization in Random Recurrent Neural Networks
Emmanuel Dauce, Olivier Moynot, Olivier Pinaud and Manuel Samuelides Neural Processing Letters 14 (2) 115 (2001) https://doi.org/10.1023/A:1012435207437
R. Stoop and L.A. Bunimovich 1 577 (1999) https://doi.org/10.1109/ICECS.1999.812351
Inhibitory connections enhance pattern recurrence in networks of neocortical pyramidal cells
R. Stoop, K. Schindler and L.A. Bunimovich Physics Letters A 258 (2-3) 115 (1999) https://doi.org/10.1016/S0375-9601(99)00262-5
M. Olivier and S. Manuel 1 341 (1999) https://doi.org/10.1109/IJCNN.1999.831515
Recurrent Neural Networks
Judy Dayhoff, Peter Palmadesso and Fred Richards International Series on Computational Intelligence, Recurrent Neural Networks 19994575 (1999) https://doi.org/10.1201/9781420049176.ch7
Self-organization and dynamics reduction in recurrent networks: stimulus presentation and learning
Emmanuel Dauce, Mathias Quoy, Bruno Cessac, Bernard Doyon and Manuel Samuelides Neural Networks 11 (3) 521 (1998) https://doi.org/10.1016/S0893-6080(97)00131-7
Neural networks with prescribed large time behaviour
S A Vakulenko and P V Gordon Journal of Physics A: Mathematical and General 31 (47) 9555 (1998) https://doi.org/10.1088/0305-4470/31/47/015