La fonctionnalité Article cité par… liste les citations d'un article. Ces citations proviennent de la base de données des articles de EDP Sciences, ainsi que des bases de données d'autres éditeurs participant au programme CrossRef Cited-by Linking Program . Vous pouvez définir une alerte courriel pour être prévenu de la parution d'un nouvel article citant " cet article (voir sur la page du résumé de l'article le menu à droite).
Article cité :
Klaus Frahm , Jean-Louis Pichard
J. Phys. I France, 5 7 (1995) 877-906
Citations de cet article :
29 articles
Electronic transport in chaotic mesoscopic cavities: A Kwant and random matrix theory based exploration
Rohit Subbarayan Chandramouli, Rohit Kumar Srivastav and Santosh Kumar Chaos: An Interdisciplinary Journal of Nonlinear Science 30 (12) (2020) https://doi.org/10.1063/5.0026039
Graphene
pn
junction in a quantizing magnetic field: Conductance at intermediate disorder strength
Christian Fräßdorf, Luka Trifunovic, Nils Bogdanoff and Piet W. Brouwer Physical Review B 94 (19) (2016) https://doi.org/10.1103/PhysRevB.94.195439
Universal conductance statistics in a backscattering model: Solving the Dorokhov-Mello-Pereyra-Kumar equation withβ=1, 2, and 4
Gennady Mil'nikov and Nobuya Mori Physical Review B 88 (15) (2013) https://doi.org/10.1103/PhysRevB.88.155406
Determining and characterizing families of electronic resonance states in open and closed coupled cavities
F. M. Zanetti and M. G. E. da Luz The European Physical Journal B 85 (6) (2012) https://doi.org/10.1140/epjb/e2012-20925-5
Jacobi crossover ensembles of random matrices and statistics of transmission eigenvalues
Santosh Kumar and Akhilesh Pandey Journal of Physics A: Mathematical and Theoretical 43 (8) 085001 (2010) https://doi.org/10.1088/1751-8113/43/8/085001
Transition from Poisson to circular unitary ensemble
Vinayak and Akhilesh Pandey Pramana 73 (3) 505 (2009) https://doi.org/10.1007/s12043-009-0103-y
Universal spectral correlations in orthogonal-unitary and symplectic-unitary crossover ensembles of random matrices
Santosh Kumar and Akhilesh Pandey Physical Review E 79 (2) (2009) https://doi.org/10.1103/PhysRevE.79.026211
Contour-integral method for transitions to the circular unitary ensemble
Vinayak and Akhilesh Pandey Journal of Physics A: Mathematical and Theoretical 42 (31) 315101 (2009) https://doi.org/10.1088/1751-8113/42/31/315101
Asymptotic Behavior of the Conductance in Disordered Wires with Perfectly Conducting Channels
Yositake Takane Journal of the Physical Society of Japan 77 (1) 014703 (2008) https://doi.org/10.1143/JPSJ.77.014703
Brownian-motion ensembles: correlation functions of determinantal processes
A F Macedo-Junior and A M S Macêdo Journal of Physics A: Mathematical and Theoretical 41 (1) 015004 (2008) https://doi.org/10.1088/1751-8113/41/1/015004
Brownian-motion ensembles of random matrix theory: A classification scheme and an integral transform method
A.F. Macedo-Junior and A.M.S. Macêdo Nuclear Physics B 752 (3) 439 (2006) https://doi.org/10.1016/j.nuclphysb.2006.06.036
Correlation functions for random involutions
P. J. Forrester, T. Nagao and E. M. Rains International Mathematics Research Notices (2006) https://doi.org/10.1155/IMRN/2006/89796
Correlations for superpositions and decimations of Laguerre and Jacobi orthogonal matrix ensembles with a parameter
Peter J. Forrester and Eric M. Rains Probability Theory and Related Fields 130 (4) 518 (2004) https://doi.org/10.1007/s00440-004-0374-7
Dynamical correlations for vicious random walk with a wall
Taro Nagao Nuclear Physics B 658 (3) 373 (2003) https://doi.org/10.1016/S0550-3213(03)00176-7
Vicious random walkers and a discretization of Gaussian random matrix ensembles
Taro Nagao and Peter J. Forrester Nuclear Physics B 620 (3) 551 (2002) https://doi.org/10.1016/S0550-3213(01)00561-2
Effects of Fermi energy, dot size, and leads width on weak localization in chaotic quantum dots
E. Louis and J. Vergés Physical Review B 63 (11) 115310 (2001) https://doi.org/10.1103/PhysRevB.63.115310
Quaternion determinant expressions for multilevel dynamical correlation functions of parametric random matrices
Taro Nagao and Peter J. Forrester Nuclear Physics B 563 (3) 547 (1999) https://doi.org/10.1016/S0550-3213(99)00588-X
Correlations for the orthogonal-unitary and symplectic-unitary transitions at the hard and soft edges
P.J. Forrester, T. Nagao and G. Honner Nuclear Physics B 553 (3) 601 (1999) https://doi.org/10.1016/S0550-3213(99)00272-2
Random-matrix theories in quantum physics: common concepts
Thomas Guhr, Axel Müller–Groeling and Hans A. Weidenmüller Physics Reports 299 (4-6) 189 (1998) https://doi.org/10.1016/S0370-1573(97)00088-4
Diffusion onGL(N,C)/U(N)and Eigenvalue Density forN→∞Limit
Toshinao Akuzawa and Miki Wadati Journal of the Physical Society of Japan 67 (2) 421 (1998) https://doi.org/10.1143/JPSJ.67.421
Transitive ensembles of random matrices related to orthogonal polynomials
Taro Nagao and Peter J. Forrester Nuclear Physics B 530 (3) 742 (1998) https://doi.org/10.1016/S0550-3213(98)00501-X
Diffusions on symmetric spaces of type A III and random matrix theories for rectangular matrices
Toshinao Akuzawa and Miki Wadati Journal of Physics A: Mathematical and General 31 (7) 1713 (1998) https://doi.org/10.1088/0305-4470/31/7/007
Exact and asymptotic formulas for overdamped Brownian dynamics
P.J. Forrester and B. Jancovici Physica A: Statistical Mechanics and its Applications 238 (1-4) 405 (1997) https://doi.org/10.1016/S0378-4371(96)00459-1
Brézin-Zee dynamical correlator: An S-matrix Brownian motion approach
A. M. S. Macêdo Physical Review E 55 (2) 1457 (1997) https://doi.org/10.1103/PhysRevE.55.1457
Correlations for parameter— dependent random matrices
P. J. Forrester and T. Nagao Journal of Statistical Physics 89 (1-2) 69 (1997) https://doi.org/10.1007/BF02770755
Distribution of Parametric Conductance Derivatives of a Quantum Dot
P. W. Brouwer, S. A. van Langen, K. M. Frahm, M. Büttiker and C. W. J. Beenakker Physical Review Letters 79 (5) 913 (1997) https://doi.org/10.1103/PhysRevLett.79.913
Brownian-motion model of parametric correlations in ballistic cavities
A. M. S. Macêdo Physical Review B 53 (13) 8411 (1996) https://doi.org/10.1103/PhysRevB.53.8411
Conductance length autocorrelation in quasi one-dimensional disordered wires
Klaus Frahm and Axel Müller-Groeling Journal of Physics A: Mathematical and General 29 (17) 5313 (1996) https://doi.org/10.1088/0305-4470/29/17/009
Quantum transport in disordered wires: Equivalence of the one-dimensional σ model and the Dorokhov-Mello-Pereyra-Kumar equation
P. W. Brouwer and K. Frahm Physical Review B 53 (3) 1490 (1996) https://doi.org/10.1103/PhysRevB.53.1490