Numéro
J. Phys. I France
Volume 6, Numéro 12, December 1996
Page(s) 1673 - 1681
DOI https://doi.org/10.1051/jp1:1996102
DOI: 10.1051/jp1:1996102
J. Phys. I France 6 (1996) 1673-1681

Modelling $\mathsf \kappa$ Phase Organic Conductors

V.M. Yartsev1, O.O. Drozdova2, V.N. Semkin2 and R.M. Vlasova2

1  Centro de Física, Instituto Venezolano de Investigaciones Científicas, Apartado 21827, Caracas 1020-A, Venezuela
2  A.F. Ioffe Physico-Technical Institute, Russian Academy of Sciences, St-Petersburg, Russia



(Received 17 January 1996, revised 25 March 1996, accepted 27 August 1996)

Abstract
$\kappa$-phase organic conductors with bidimensional layers of orthogonal molecular dimers are modelled by tetramers and hexamers of appropriate geometry. The complex conductivity is calculated within the Hubbard model including the electron-intramolecular vibration coupling. The polarized optical conductivity data of two $\kappa$-phase charge-transfer salts of bis-(ethylenedithio)-tetrathiafulvalene: $\kappa$-(BEDT-TTF) 2[ Hg(SCN) 2Br] and $\kappa$-(BEDT-TTF) 2[ Hg(SCN)Cl 2] , are discussed.



© Les Editions de Physique 1996

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.