Numéro |
J. Phys. I France
Volume 3, Numéro 11, November 1993
|
|
---|---|---|
Page(s) | 2207 - 2227 | |
DOI | https://doi.org/10.1051/jp1:1993241 |
DOI: 10.1051/jp1:1993241
J. Phys. I France 3 (1993) 2207-2227
1 Departamento de Física Teorica, Universidad de Zaragoza, Pza. S. Francisco s/n, 50009 Zaragoza, Spain
2 Dipartimento di Fisica, Università di Roma I, "La Sapienza", Piazzale Aldo Moro, Roma 00100, Italy and INFN, Sezione di Roma, "Tor Vergata" Via della Ricerca Scientifica, Roma 00133, Italy
3 Dipartimento di Fisica, Universit,i di Roma 11, "Tor Vergata", Via della Ricerca Scientifica, Roma 00133, Italy
4 Departament de Física Fonamental, Universitat de Barcelona, Diagonal 648, 08028 Barcelona, Spain
5 Departamento de Física Teorica I, Universidad Complutense de Madrid, Ciudad Universitaxia, 28040 Madrid, Spain
© Les Editions de Physique 1993
J. Phys. I France 3 (1993) 2207-2227
The de Ahneida-Thouless line in the four dimensional Ising spin glass
J.C. Ciria1, G. Parisi2, F. Ritort3, 4 and J.J. Ruiz-Lorenzo51 Departamento de Física Teorica, Universidad de Zaragoza, Pza. S. Francisco s/n, 50009 Zaragoza, Spain
2 Dipartimento di Fisica, Università di Roma I, "La Sapienza", Piazzale Aldo Moro, Roma 00100, Italy and INFN, Sezione di Roma, "Tor Vergata" Via della Ricerca Scientifica, Roma 00133, Italy
3 Dipartimento di Fisica, Universit,i di Roma 11, "Tor Vergata", Via della Ricerca Scientifica, Roma 00133, Italy
4 Departament de Física Fonamental, Universitat de Barcelona, Diagonal 648, 08028 Barcelona, Spain
5 Departamento de Física Teorica I, Universidad Complutense de Madrid, Ciudad Universitaxia, 28040 Madrid, Spain
(Received 2 June 1993, accepted 13 July 1993)
Abstract
We confirm recent results obtained in a previous work by studying the Ising spin glass at finite magnetic field in four dimensions.
Different approaches to this problem suggest the existence of a critical line similax to that found in mean-field theory but
in a universality class different of the transition at zero magnetic field. Problems due to the strong nature of the finite-size
corrections within a magnetic field are also discussed.
© Les Editions de Physique 1993