Numéro
J. Phys. I France
Volume 6, Numéro 10, October 1996
Page(s) 1321 - 1345
DOI https://doi.org/10.1051/jp1:1996139
DOI: 10.1051/jp1:1996139
J. Phys. I France 6 (1996) 1321-1345

The Flat Phase of Crystalline Membranes

Mark J. Bowick1, Simon M. Catterall1, Marco Falcioni1, Gudmar Thorleifsson1 and Konstantinos N. Anagnostopoulos2

1  Department of Physics, Syracuse University, Syracuse, NY 13244-1130, USA
2  The Niels Bohr Institute, Blegdamsvej 17, 2100 Copenhagen $\varnothing$, Denmark



(Received 28 March 1996, revised 9 May 1996, accepted 6 June 1996)

Abstract
We present the results of a hight-statistics Monte Carlo simulation of a phantom crystalline (fixed-connectivity) membrane with free boundary. We verify the existence of a flat phase by examining lattices of size up to 128 2. The Hamiltonian of the model is the sum of a simple spring pair potential, with no hard-core repulsion, and bending energy. The only free parameter is the bending rigidity k. In-plane elastic constants are not explicitly introduced. We obtain the remarkable result that this simple model dynamically generates the elastic constants required to stabilize the flat phase. We present measurements of the size (Flory) exponent $\nu$ and the roughness exponent $\zeta$. We also determine the critical exponents $\eta$ and $\eta_{\rm u}$ describing the scale dependence of the bending rigidity $(k(q) \sim q^{-\eta})$ and the induced elastic constants $(\lambda (q)\sim \mu (q)\sim q^{\eta_{\rm u}})$. At bending rigidity k=1.1, we find $\nu=0.95(5)$ (Hausdorff dimension $d_{\rm H}=2/\nu = 2.1(1)),\,\zeta =0.64(2)$ and $\eta_{\rm u}=0.50(1)$. These results are consistent with the scaling relation $\eta =(2+\eta_{\rm u})/4$. The additional scaling relation $\eta=2(1-\zeta)$ implies $\eta =0.72(4)$. A direct measurement of $\eta$ from the power-law decay of the normal-normal correlation function yields $\eta\approx 0.6$ on the 128 2 lattice.



© Les Editions de Physique 1996