Numéro |
J. Phys. I France
Volume 7, Numéro 11, November 1997
|
|
---|---|---|
Page(s) | 1299 - 1304 | |
DOI | https://doi.org/10.1051/jp1:1997133 |
DOI: 10.1051/jp1:1997133
J. Phys. I France 7 (1997) 1299-1304
P. Weinberger1, 2, C. Sommers3, U. Pustogowa2, L. Szunyogh2, 4 and B. Újfalussy2
1 Institut für Technische Elektrochemie, Technical University Vienna, Getreidemarkt 9, 1060 Vienna, Austria
2 Center for Computational Materials Science, Vienna, austria
3 Laboratoire de Physique des Solides URA 2 CNRS, Université Paris-Sud, bâtiment 510, 91405 Orsay Cedex, France
4 Department of Theoretical Physics, Technical University of Budapest, Hungary
(Received 21 July 1997, received in final form 30 July 1997, accepted 8 September 1997)
© Les Editions de Physique 1997
J. Phys. I France 7 (1997) 1299-1304
Determination of Magnetic Interface Coupling
Constants for Magnetic Multilayers
P. Weinberger1, 2, C. Sommers3, U. Pustogowa2, L. Szunyogh2, 4 and B. Újfalussy2
1 Institut für Technische Elektrochemie, Technical University Vienna, Getreidemarkt 9, 1060 Vienna, Austria
2 Center for Computational Materials Science, Vienna, austria
3 Laboratoire de Physique des Solides URA 2 CNRS, Université Paris-Sud, bâtiment 510, 91405 Orsay Cedex, France
4 Department of Theoretical Physics, Technical University of Budapest, Hungary
(Received 21 July 1997, received in final form 30 July 1997, accepted 8 September 1997)
Abstract
The magnetic (in-plane) interface coupling energy of an Au(100)/FeAu
3Fe/Au(100) multilayer system has been calculated using the well-known fully relativistic spin-polarized Screened KKR method.
The coupling energy was expanded in polynomials of cos(
) in order to compare it with calculations using the Force Theorem method prescription. The second order term in the polynomial
expansion is important when looking at total energy differences. The intention of this paper is to show the numerical feasibility
of using the force theorem on particular model systems. In another paper we apply it to existing physical systems.
© Les Editions de Physique 1997