Numéro
J. Phys. I France
Volume 6, Numéro 8, August 1996
Page(s) 1031 - 1041
DOI https://doi.org/10.1051/jp1:1996114
J. Phys. I France 6 (1996) 1031-1041
DOI: 10.1051/jp1:1996114

Stability of the Mézard-Parisi Solution for Random Manifolds

D.M. Carlucci1, C. De Dominicis2 and T. Temesvari3

1  Scuola Normale Superiore di Pisa, Piazza dei Cavalieri, Pisa 56126, Italy
2  Service de Physique Théorique, CE Saclay, 91191 Gif sur Yvette, France
3  Institute for Theoretical Physics, Eötvös University, 1088 Budapest, Hungary


Received 4 January 1996, received in final form 16 April 1996, accepted 18 Avril 1996

Abstract
The eigenvalues of the Hessian associated with random manifolds are constructed for the general case of R steps of replica symmetry breaking. For the Parisi limit $R\rightarrow \infty$ (continuum replica symmetry breaking) which is relevant for the manifold dimension D<2, they are shown to be non negative.


Résumé
Les valeurs propres de la hessienne, associée avec une variété aléatoire, sont construites dans le cas général de R étapes de brisure de la symétrie des répliques. Dans la limite de Parisi, $R\rightarrow \infty$ (brisure continue de la symétrie des répliques) qui est pertinente pour la dimension de la variété D<2, on montre qu'elles sont non négatives.



© Les Editions de Physique 1996

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.